
Measuring Data Quality in STIX-based SOAR Platforms

MASTERARBEIT

zur Erlangung des akademischen Grades
Master of Science in Engineering

Eingereicht von

Konstantin Papesh, BSc

Betreuung: FH-Assistenzprof. Dr.techn. Emmanuel Helm, MSc

Hagenberg, September 2022

Declaration

I hereby declare that the thesis is entirely the result of my own original work. Where other
sources of information have been used, they have been indicated as such and properly
acknowledged. I further declare that this or similar work has not been submitted for
credit elsewhere. This printed thesis is identical with the electronic version submitted.

Hagenberg, 2nd September, 2022
Konstantin Papesh

iii

Contents

Preface vii

Abstract ix

Kurzfassung xi

1 Introduction 1
1.1 Landscape . 1
1.2 Goal . 2
1.3 Involved Stakeholder . 2
1.4 Structure . 3

2 Background 5
2.1 Cyber Threat Information and Intelligence 5
2.2 Structured Threat Information Expression 5
2.3 Security Operations Center . 7
2.4 Security Orchestration, Automation, and Response 7
2.5 Data Orchestrator . 8
2.6 Playbook . 8
2.7 Related Work . 11

3 Possible Approaches 13
3.1 Requirements . 13
3.2 Possible STIX Metrics . 14
3.3 Possible API Metrics . 24
3.4 Discussion . 25
3.5 Final Metrics . 30

4 Methodology 31
4.1 Overview . 31
4.2 Architecture . 31
4.3 Playbook Execution in Detail . 32
4.4 Hook . 33
4.5 Scraper . 34

v

4.6 Analyzer . 37
4.7 API . 46
4.8 Frontend . 46

5 Results 49
5.1 Setup . 49
5.2 Report Example . 50
5.3 E-Mail File . 51
5.4 Malicious Hash . 55

6 Discussion & Outlook 59
6.1 Discussion . 59
6.2 Outlook . 60

A Technical Details 63

List of Figures 69

List of Tables 71

List of Algorithms 73

Glossary 75

Acronyms 77

Bibliography 79

Preface

Do not act as if you were going to
live ten thousand years. Death
hangs over you. While you live,
while it is in your power, be good.

Marcus Aurelius

Before starting this work, I was not particularly familiar with security systems or Cyber
Threat Intelligence in general. Nevertheless, it was interesting to delve into the workings
of today’s cyber threat defence and to contribute just a little bit to its progress. This
thesis was fun to implement and write. I hope it is also bearable to read.

Thanks to Emmanuel Helm for advising and guiding me throughout this thesis and
gratitude to Christoph Praschl and Sebastian Pritz for proofreading, and the AIST staff
in general; I enjoyed writing this thesis in your company. I would also like to thank
Nextpart which allowed their platform Guardia to be used within this thesis.

Thanks to everyone for sticking to me. Thanks to all my friends for enduring me
in general, but especially while writing my master thesis. I would also like to thank
Dallmayr, J.Hornig and Bio-Kaffeerösterei Kurt Traxl for supplying dearly needed energy
for my studies. Furthermore, I would like to thank the HSD-Kuchl, Starkenberger,
whoever installed the air-conditioning in our office, Heaven Shall Burn, Kasger, the
publicity department of Turkish Airways, the Österreichische Bundesbahnen and its main
competitor, Westbahn, MPreis and last but not least, IKEA.

And finally, a big thank you to Viktoria and the whole team at the university pub. I will
miss you.

vii

Abstract

Security analysts use Security Orchestration, Automation, and Response (SOAR) plat-
forms to dissect and analyse possible malicious data. These platforms rely on external
services to enrich the given data. However, the data quality of new services is often
unknown. To mitigate this issue, metrics can be established to assess different parameters
in connection with data quality.

This thesis analyses Cyber Threat Intelligence (CTI) metrics currently proposed in the
literature on their viability within Structured Threat Information Expression (STIX)-
based SOAR platforms and implements the first version of such a measuring framework.
Multiple metrics are compared against a list of requirements set by the nature of SOAR
platforms. After viable metrics are identified, they are implemented within a framework
which hooks into an existing SOAR platform. Finally, the framework is tested, and the
calculated metrics are discussed.

The conclusion is that there are metrics available that can be altered to work with
SOAR platforms. However, some metrics rely on parameters not readily accessible from
SOAR platforms. That means the design of these platforms also needs to consider the
requirements for data quality frameworks.

ix

Kurzfassung

Sicherheitsanalysten verwenden Security Orchestration, Automation, and Response
(SOAR) Plattformen, um Schadsoftware zu sezieren und analysieren. Diese Plattfor-
men benötigen externe Dienste um die vorhandenen Daten anzureichern. Oft ist die
Qualität neuer Dienste jedoch unklar. Um dieses Problem zu beheben können Metrik
aufgestellt werden, welche verschiedene Parameter in Bezug auf Datenqualität erheben.

Diese Arbeit analysiert Cyber Threat Intelligence (CTI) Metriken, welche in der aktuellen
Literatur vorgeschlagen werden, auf ihre Verwendbarkeit innerhalb Structured Threat
Information Expression (STIX)-basierten SOAR Plattformen und implementiert eine
erste Version eines solchen Frameworks. Mehrere Metriken werden mit einer Liste an
Anforderungen von SOAR Plattformen verglichen. Nachdem verwendbare Metriken
identifiziert sind, werden diese innerhalb eines Frameworks implementiert, welches in eine
existierende SOAR Plattform eingebunden wird. Schlussendlich wird dieses Framework
getestet und die berechneten Metriken diskutiert.

Als Fazit kann gesagt werden, dass bereits Metriken existieren welche abgeändert in SOAR
Plattformen eingesetzt werden können. Jedoch verlangen manche Metriken Parameter
welche nicht einfach von SOAR Plattformen zur Verfügung gestellt werden. Das bedeutet,
dass auch SOAR Plattformen auf die Anforderungen eines Datenqualitätsframeworks
eingehen müssen.

xi

CHAPTER 1
Introduction

The cyber threat landscape is vast and ever-changing, with organizations progressively
integrating Cyber Threat Intelligence (CTI) into their defences against cyber attacks
[1]–[5].

This thesis presents an architecture for analyzing different sources providing CTI within
a Security Orchestration, Automation, and Response (SOAR) platform. Each source
analyses suspicious data and returns intelligence. This intelligence is analyzed and
weighted against other sources, providing insight into how much intelligence a source
offers and how much impact that information has.

This chapter describes the motivation behind an automated assessment of CTI sources,
followed by the goal of the thesis. Lastly, the structure of the work is given.

1.1 Landscape
With more devices connected to the internet, cyber security gains importance. Web-
enabled devices also mean a potential attack vector for adversaries [6]–[8]. And once
attackers have successfully attacked an organization, there is a possibility of substantial
losses to productivity, capital or customers [9].

As attacks become more sophisticated, companies can no longer depend on simple firewalls
and virus scanners to keep threats at bay. Instead, CTI is used by a Security Operations
Center (SOC) to gain enough insight into the current threat landscape to respond to
emerging threats appropriately. This CTI cannot be created by a single company alone,
so CTI sharing has become commonplace with communities and organizations exchanging
threat information on marketplaces [10]. Several standards have been proposed for
CTI sharing, such as Open Indicators of Compromise (OpenIOC), Cyber Observable
Expression (CybOX) or Vocabulary for Event Recording and Incident Sharing (VERIS),
with Structured Threat Information Expression (STIX) being the most common one [11].

1

1. Introduction

These marketplaces can be open for anyone to contribute, only available to participating
organizations or accessible only by payment.

With open-source marketplaces often being un-curated and lacking detailed reports, orga-
nizations rely on paid, curated CTI services to satisfy their cyber security requirements,
with 44% of companies choosing to do so [12].

These feeds can also be used for forensic purposes. Suspicious data may be captured by
security analysts, which then needs to be analyzed. For this, SOAR platforms can be
used, which present analysts with an interface to upload, annotate and review files [13].
By uploading suspicious data, a case is opened where the uploaded file is automatically
analyzed and enriched by multiple background services. The resulting data of the services
are then merged into an overview which can be viewed by the analyst and annotated.

What is unclear is the quality produced by these services. Services rarely self-evaluate
themselves, and quality is highly dependent on how the service is used and in what context.
Some services provide intelligence on multitudes of topics where it is possible that one
subject is covered in great length while other topics are served better by other providers.
Studies within this field are getting quickly outdated, are using a generic approach not
applicable for the often specific domains of cyber security or are anonymizing the feeds to
preserve privacy but leading to no business value as quality services cannot be discerned
[11], [14], [15].

1.2 Goal
This work aims to find metrics for CTI quality measurement and implement them within
a framework able to evaluate services and their results. The calculated scores for each
service should be able to be compared against each other and should not rely on long-term
observation of the source. Several approaches to quality scoring are evaluated; viable
metrics are chosen, implemented and augmented to satisfy the requirements set by the
nature of SOAR platforms, namely case-based analysis of threats. The following research
question will be the focus of this work: How can data quality be measured within Security
Orchestration, Automation, and Response platforms? To ease answering this question,
the following sub-question have been formulated:

1. What CTI measurements do already exist?

2. How can these be altered to work with CTI data of a SOAR platform?

3. How can a CTI rating framework be incorporated into a SOAR platform?

1.3 Involved Stakeholder
The company Nextpart, located in Linz, Upper Austria, specializes in cyber security
and offers consulting as well as tools to avoid cyber threats. Its main product, Guardia,

2

1.4. Structure

also called SOC-Toolkit, specializes in the enrichment of security incidents by offering
automated playbooks for security analysts. These playbooks enrich incidents by aggre-
gating information about the incident from multiple CTI sources. As a stakeholder in
this thesis, Nextpart provides feedback on the implemented algorithm.

1.4 Structure
The work is structured as follows: Chapter 2 provides background information and related
work about the topic. The basics about CTI and its tools are explained. Chapter 3
compares different methodologies for assessing CTI sources. Multiple approaches from
literature are introduced, and their effectiveness in SOARs are discussed. The following
Chapter 4 describes the implementation of the proposed architecture, with all components
used within the framework explained in detail. The framework is then tested in Chapter 5,
where multiple STIX bundles are analyzed with the framework. The results are visualized
and analyzed in the following Section 6.1, where the work concludes with a summary
and outlook.

3

CHAPTER 2
Background

This chapter will start with the definition of cyber threat information and intelligence.
Then, the used Cyber Threat Intelligence format Structured Threat Information Expres-
sion is described. This format is then used by Security Operations Center and, more
specifically, Security Orchestration, Automation, and Response platforms, both of which
are described. Then, the necessary data orchestrators are described, which are needed to
run playbooks used by SOAR platforms. Finally, a literature review is done.

2.1 Cyber Threat Information and Intelligence
Cyber threats, as defined by the Computer Security Resource Center of the National
Institute of Standards and Technology, are circumstances or events with potentially
adverse effects on organisations, their operations and assets or individuals via unauthorised
access, destruction, disclosure, modification of information or denial of service [16]. Cyber
threat information can be used to mitigate, prevent and analyse attacks on computer
infrastructure. It provides information about how systems can be attacked, what files may
be malicious or what zero-day exploits are currently threatening the integrity of servers.
Cyber threat information can be converted into CTI by transforming and enriching it to
provide a context for decision-making [17]. CTI can be created from an organisation’s
internal systems or be received from public or paid web services which specialise in CTI
aggregation.

2.2 Structured Threat Information Expression
STIX can be used to exchange CTI [18]. It allows organisations to share threat intelligence
using a clear and defined standard. Based on the Java Script Object Notation (JSON),
version 2 minimizes its memory footprint compared to version 1’s Extensible Markup
Language (XML) representation while maintaining its human readability [19]. An example

5

2. Background

of a STIX JSON can be seen in Listing 2.1. Currently, most services provide and support
version 2 of STIX. From this point onwards, STIX refers to STIX 2.1, unless mentioned
otherwise.

{
"created": "2022-07-23T13:02:04.599135Z",
"modified": "2022-07-23T13:02:04.599135Z",
"spec_version": "2.1",
"type": "email-message",
"id": "email-message--b3bf4d69-660e-550d-b6b9-76e81346b3ef",
"date": "2022-03-09T11:56:04.000000Z",
"content_type": "text/html",
"from_ref": "email-addr--6f9b26ba-98c3-5dba-ac4c-5db89ec7bef2",
"to_refs": [

"email-addr--81122ca3-e9bc-5ab4-83ff-73e46c618359"
],
"subject": "How’s the master thesis going?"

}

Listing 2.1: Example of a STIX 2.1 JSON file representing an email object.

A STIX bundle acts as a container for arbitrary STIX objects. These objects are not
required to be connected or have anything in common. STIX objects are further divided
into two groups, STIX Core Objects, which are used to represent CTIs, real-world
instances and relationships between them and STIX Meta Objects (SMO), which are
used to supplement some STIX objects with metadata for user and system workflows,
see Table 2.1.

STIX Core Objects are further broken down into three classes:

• STIX Domain Object (SDO)

• STIX Cyber-observable Object (SCO)

• STIX Relationship Object (SRO)

STIX Objects
STIX Core Objects STIX Meta Objects (SMO)

STIX Domain
Objects
(SDO)

STIX Cyber-
observable

Objects
(SCO)

STIX
Relationship

Objects
(SRO)

Extension
Definition
Objects

Language
Content
Objects

Marking
Definition
Objects

STIX Bundle
Object

Table 2.1: The taxonomy of STIX. Source [18].

STIX Domain Object (SDO) objects are some of the most common STIX objects
encountered. They represent concepts of CTI such as infrastructure, identities, locations

6

2.3. Security Operations Center

or incidents. These domain objects convey information about specific entities relevant to
the current case. For example, an Identity object must include a name property, but may
also possess an optional contact_information property telling security analysts how
to contact said identity.

STIX Cyber-observable Object (SCO) objects are used to enrich SDOs by offering
information about host-based or network-based occurrences. For example, an application
running or specific network packages being sent may be described in an SCO and then
connected to an SDO via an SRO.

STIX Relationship Object (SRO) objects indicate relationships between two SDOs or
SCOs. These relationships can link an SDO or SCO to another SDO or SCO with the
type property specifying the kind of relationship, i.e. using the type exploits to link
a malware object to a vulnerability. SCOs are used to show the interaction between
different objects in the graph. Some relationships are embedded within the objects
themselves, most importantly created_by_ref which connects an object to its creator
identity.

2.3 Security Operations Center

SOC are used by security analysts to overview, enter and analyse cases within their
domain of responsibility [20]. SOCs can act as an interface between the human security
expert and the underlying architecture of threat identification. SOCs can be used to enter
possible indicators of attacks or unknown files, which are then automatically analysed,
and the results are shown. These cases can then be visualised for easier consumption
and annotated for further investigation or reference if another similar case occurs.

2.4 Security Orchestration, Automation, and Response

SOAR platforms are used to collect and view data from various security software services
[21]. These platforms try to solve the problem of having too many manual processes
while analysing security incidents, as manual processes may increase the probability of
missing alerts, loss of critical response time via manual data enrichment, and having
non-standardised workflows [21]. According to Lawson and Price [13], SOAR solutions
have grown out of three different technologies, namely Security incident response platform
(SIRP), Security orchestration and automation (SOA) and Threat intelligence platform
(TIP), as Figure 2.1 shows.

SOAR platforms are using automated processes to handle security incidents faster by
using predefined playbooks [21]. These playbooks are composed of different services based
on the incoming incident type.

7

2. Background

Figure 2.1: Components of a SOAR platform. Source [13].

2.5 Data Orchestrator

A data orchestrator is used to transform input data via multiple different job stages
into an output with the help of an orchestration graph [22]. Input and output, as well
as the different job stages, called Ops, are defined by the software architect, and their
functionality depends on the given data orchestrator. Ops are atomic pieces of code
which can be reused in multiple jobs, reducing code duplication.

2.6 Playbook

SOAR platforms rely on playbooks to function. These playbooks are predefined by
security analysts based on services available and previous experiences with the same
incident type. To visualise the workflow a security analyst will take, following Section 2.6.1
highlights an example usage of a playbook within the Guardia software.

2.6.1 Example Use Case

A security analyst gets forwarded a suspicious email by an employee who is unsure if it
is real, spam or even malicious. To get an overview of possible threats contained within
the email, a tool like a SOAR platform can be used to analyse said email.

8

2.6. Playbook

First, the security analyst downloads the email and saves it as a .eml or .msg file.
Then the web interface of the SOAR platform can be accessed. The welcome screen
allows the security analyst to upload the email via drag-and-drop or via a file selection
window. Uploading a file selects a playbook based on the file type and file properties.
In Figure 2.2, the email file is being uploaded, so the playbook Direct Email Playbook
is selected. This playbook is further customisable by adding tools to the investigation
run. These tools can look up WHOIS entries for domains contained within the email
body or try to see if the sender’s email is contained within a blocklist. When the security
analyst is satisfied with the services selected, the playbook can be started by clicking the
Investigate button on the bottom of the interface.

Figure 2.2: An email file being uploaded to Guardia.

After the playbook has been launched, Guardia will automatically execute all selected
services and aggregate the results to a STIX graph. For a detailed technical explanation
about playbook execution refer to Section 4.3.2. Depending on the number of services
chosen, the playbook will run for a few minutes.

9

2. Background

After the playbook is finished, the security analyst is redirected to a page showing the
finished playbook from which a decision can be made if the email is a threat or not. A
possible view of the case is presented in Figure 2.3. As can be seen, the graphs can be
extensive.

Figure 2.3: The resulting STIX graph as displayed by Guardia.

As can be seen from the already long list of integrations in Figure 2.2, the correct choice
of integration is important. Selecting all possible integrations is a naive and unviable
approach; with growing integrations, the run time and expenses will increase with every
service selected. For every additional service selected, computation time is added by
sending requests and parsing responses. Additionally, some services require a fee for
usage; this fee is always applied, even when the service returns no to little intelligence.

Rating received CTI may benefit security analysts, software architects and platform
consultants alike. For security analysts, the knowledge of which service provides more
structured and relevant CTI supports them in deciding which services can be used within
SOAR playbooks. Software architects on the other hand can use the metrics to verify
transformation implementations as some services do not return STIX; with these services,
transformers need to be used to convert the structured response into a STIX bundle.
Having the ability to check these bundles for possible missing properties or loss of quality
may be a welcome addition to the development process. Additionally, persisting the

10

2.7. Related Work

metrics for each service after a playbook run may show quality trends of services; some
services may improve their service quality while some may have a decrease in quality. A
sudden drop in quality may indicate a change in data format; when a transformer is used
and the format changes, properties may not be mapped properly anymore.

Finally, having a numeric metric allows security consultants to recommend services for
customers to use in their playbooks based on the customers’ field of technology. For
example, for a new customer in the banking sector, the security consultant can review
the metrics of already existing customers in the same sector. Knowing which services
return the most suiting results may increase customer satisfaction from the start of the
partnership.

2.7 Related Work
While SOCs are getting more common currently, automated aggregation of CTI is
uncommon. Even more so is automated evaluation and scoring of said aggregated CTI.

Systems dealing with automated STIX generation and automated evaluation focus on
unstructured intelligence [23], which is not applicable for already structured STIX data.
These approaches often use artificial intelligence to classify data for importance. With
already structured data, this approach may be less accurate and more wasteful of resources
than simple metrics.

One paper [24] introduces four metrics for CTI feeds; Timeliness, Sensitivity, Originality
and Impact. These metrics however are not based on live measurements, they incorporate
data from a specific time frame, i.e. 7 months and need additional, worldview data to
calculate a score for sources. This additional worldview data is also not available or
needs extensive crawling and collecting for some cases of Guardia. Another work [25]
also includes some metrics, Volume, Differential contribution, Exclusive contributions,
Latency, Accuracy and Coverage. Again, these metrics are based on a long-term view of
the feeds and are not applicable for case-based scores. ETIP [26] has a similar approach
to calculating metrics for given data input, however, they use more complex heuristic
features taking into account every possible type of STIX object. Each property of
every type needs to be assigned a weighting score manually, leading to overhead for
security analysts. Additionally, the metrics are again more relevant for worldview type of
application than for single-case application, i.e. the weight criteria Relevance calculates
if the received CTI is mentioning assets in your domain; with case-based analysis, with
services just returning information for a single asset, this metric is of little importance.
Ramsdale et al. [27] give a broad overview of sources, formats and languages. While
mostly concerned about the general usage of different CTI formats, minor analytics are
applied to STIX data, however, no metrics are composed or applied broadly to data.
Wagner et al. [14] analyze different CTI platforms based on their original sources, vetting
processes and trust mechanism. It focuses mainly on establishing trust and a total of 30
services are compared. A trust taxonomy is proposed and compared against other trust
taxonomies. Menges and Pernul [28] give insight into multiple CTI exchange formats

11

2. Background

by defining some evaluation criteria and then comparing standards with them. Four
standards and two different versions of standards are compared. The work of Sauerwein
et al. [11] focused on multiple CTI sharing platforms by performing a systematic study. 22
CTI platforms were compared based on functionalities and capabilities. The research of
Serrano et al. [29] gives an overview of the major challenges of CTI sharing and proposes
some solutions for them. Wagner et al. [2] discuss CTI sharing in general, visiting a few
key points such as automated sharing, risks, trust and privacy. It includes an extensive
review of literature related to CTI sharing, including a chapter defining and reviewing
relevancy in CTI.

All discussed works only analyze the received data itself without taking the process of
receiving the data into account.

Most implementations aggregate received STIX into a combined worldview, while Guardia
takes suspicious files, emails or any other type of possible malicious content and tries
to analyze and enrich it. Thus, the metrics and scores calculated from this approach
must also be calculated differently compared to most other approaches available in the
literature.

12

CHAPTER 3
Possible Approaches

This chapter introduces different approaches to quantify quality and information in CTI.
First, the general requirements are specified based on the nature of SOAR platforms
and their case-based approach. Then, various metrics from the literature are briefly
explained and compared. Finally, an approach is proposed, which is then implemented in
Chapter 4.

3.1 Requirements

The chosen metric should be able to reflect the quality and information of all participating
services of a playbook run by providing one or more metrics which a security analyst can
examine. These metrics should give a clear indication of what the source does best and
in what areas it is lacking. For example, a service may provide detailed malware reports,
but without any references to support them.

Important to note is that the calculation of metrics should happen with every playbook
run. The metrics should also consider metrics that result from this case-based approach,
i.e. the time until the service responds or how much one call to the service costs. Another
important addition is also that the data to be analyzed is in the STIX data format, so
the metrics should be able to handle graph data.

So based on these requirements, the following points have been noted for metrics ap-
proaches to test against:

• Able to rate CTI in the data format STIX

• Able to compare different sources between each other

• Able to be used on a snapshot

13

3. Possible Approaches

• Extensible

• Without human input

• Have a continuous value

Snapshot in this context means it should be possible to rate a single STIX bundle without
any additional historical data.

3.2 Possible STIX Metrics
The following section highlights approaches found in literature to rate CTI data.

3.2.1 FeedRank by Meier et al.
FeedRank by Meier et al. [30] is a feed ranking approach developed in 2018 at ETH
Zürich. It is based on the PageRank [31] algorithm, made famous by its usage by the
search engine Google. It assumes that when a source is more relevant, other feeds will
incorporate its contents within their feed.

The calculation of the FeedRank works in three stages, as seen in Figure 3.1.

Figure 3.1: The three steps of FeedRank: Feed Collection, Correlation Graph & Contri-
bution Analysis and Feed Rating. Source [30].

The correlation graph works by taking at least two snapshots and comparing entries
between them. If source A provided entry X at time t and source B provided X at time
t+1, source B implicitly confirms source A. Weighting is done based on how many entries
are from another source divided by the total sum of entries of a source. Additionally,
a dampening factor d is calculated by taking the average path length l, based on the
average number of feeds that list an entry and dividing one by it, see Equation (3.1).

d = P (continue) = 1 − P (stop) = 1 − 1
l

(3.1)

The contribution analysis yields a metric measuring how much of the worldview is
supplied by a single CTI source. This measurement is calculated by determining which

14

3.2. Possible STIX Metrics

source listed an object first. Meier et al. [30] do not describe the FeedRank equation
mathematically. But given the PageRank equation taken from Brin and Page [32], see
Equation (3.2), with the addition of N , which is omitted from the formula in the paper
but required for the statement „Note that the PageRanks form a probability distribution
over web pages, so the sum of all web pages’ PageRanks will be one.“ (Brin and Page
[32]) to hold true [33], Equation (3.3) can be formulated for the FeedRank.

PR(pi) = 1 − d

N
+ d

∑
pj∈M(pi)

PR(pj)
L(pj) (3.2)

FR(ti) = 1 − d

N
+ d

∑
tj∈in(ti)

FR(tj)
|out(tj)| (3.3)

where ti is a source within the worldview, d is the dampening factor, N is the number
of sources observed, in(ti) are the sources linking to ti and |out(tj)| is the number of
sources referenced by tj .

3.2.2 Trust and Quality Tool by Mavzer et al.

The Trust and Quality Tool (TQM) by Mavzer et al. [34] is a plugin for the CTI sharing
software ECHO - Early Warning System (E-EWS), designed at Bournemouth University
in cooperation with VisionSpace Technologies and Telefonica Global Services. It is
designed to measure the trust and quality of CTIs within the E-EWS system, and in
their work, the authors defined multiple metrics to measure trust and quality metrics.

The work differentiates between two metrics, trust and quality, which are broken down
into multiple metrics. The Trustworthiness metric contains the metrics Partner Sharing
Activity (p.s.a.), Sector of Activity (s.c.), Certified Cybersecurity (c.c.), Previous Ticket
Ratings (p.t.r.), Privacy (p.) and Partner Sector (p.s.). The metric Quality is defined by
Completeness (t.c.), Freshness (t.f.), Timeliness (t.t.), Extensiveness (t.e.) and Relevance
(t.r.).

Unfortunately, the underlying metrics of the trustworthiness parameter are not further
defined; while there is a textual description of how they are determined, no formulas
are given to implement said metrics programmatically. For example, the description for
Privacy says, „The metric is defined by an external tool to check if the content includes
personally identifiable information“ (Mavzer et al. [34]), this leaves much of the definition
and implementation to the programmer.

However, the metrics for the quality parameter are more defined and can be implemented
as is. The authors also list two kinds of computations; one initial computation and
one formulated after their research; only the improved version will be described in the
following pages. The improvements are based on feedback from experts and try to mimic
their rating of certain metrics.

15

3. Possible Approaches

Completeness

Completeness reflects the number of filled-in mandatory parameters. The computation
happens based on fixed values; a base score of +40 is assigned to every object. If the
object contains at least one attachment, a further +20 is added. One or more references
yield an additional +15, one or more facets +25.

Extensiveness

The extensiveness metric is based on the number of attachments, references or facets
connected to the object. It is not based on a continuous function; instead, a table is used
to assign a score to the object, see Table 3.1. For example, an object containing one
attachment, four references and two facets will receive the score 10 + 20 + 25 = 55.

Count

Type 1 2 3 4 5

Attachments +10 +25 +35 +35 +35
References +10 +15 +20 +20 +30
Facets +15 +25 +35 +35 +35

Table 3.1: The extensiveness computation [34].

Freshness

Freshness is the currency of the information presented in the object. Like the extensiveness
metric, it uses a table-based scoring, with more recent objects receiving a higher score
than older objects, see Table 3.2.

Days Score

0-3 100
3-7 90
7-15 80
15-30 70
30-90 60
90-120 50
120-150 40
150-180 30
180-270 20
270-365 10
365+ 0

Table 3.2: The freshness computation [34].

16

3.2. Possible STIX Metrics

Aggregation of metrics

The two base metrics, Trustworthiness and Quality are calculated using a weighted
sum of their sub-metrics. Equation (3.4) shows the calculation of the trustworthiness,
Equation (3.5) the calculation of quality, where w(x) is a function returning the weight
for metric x. Finally, both metrics are combined into the CTI rating CTI.R. by simply
adding both metrics together, as seen in Equation (3.6).

T = w(p.s.a.)∗p.s.a.+w(s.c.)∗s.c.+w(c.c.)∗ c.c.+w(p.t.r)∗p.t.r.+w(p.s.)∗p.s. (3.4)

Q = w(t.c.) ∗ t.c. + w(t.f.) ∗ t.f. + w(t.t.) ∗ t.t. + w(t.e.) ∗ t.e. + w(t.r.) ∗ t.r. (3.5)
CTI.R. = T + Q (3.6)

3.2.3 Measuring and visualizing cyber threat intelligence quality by
Schlette et al.

In 2020, Schlette et al. [35] introduced data quality (DQ) metrics based on STIX. The
authors propose three different levels of DQ dimensions, Report, Object and Attribute,
see Figure 3.2. Before assessing any properties, the authors defined a ground truth to
base their calculations on, see Equations (3.7) to (3.11).

Two sets of attributes are defined, required attributes Ar, see Equation (3.7), and
optional attributes Ao, see Equation (3.8). Furthermore, STIX Domain Objects and
STIX Relationship Objects are a specific subset consisting of required and optional
attributes, see Equation (3.9). All objects contained in the worldview are described by O
and may be of type SDO or SRO, see Equation (3.10). Finally, a report R consists of a
subset of all objects contained in O, see Equation (3.11).

Ar = {ar|ar required by STIX 2} (3.7)
Ao = {ao|ao optional in STIX 2} (3.8)

SDO, SRO ⊆ (Ar ∪ Ao) (3.9)
O = {o|o ∈ (SDO ∪ SRO)} (3.10)

R = {r ⊆ O} (3.11)

Concise representation

Concise representation tries to quantify duplicate entries in the data. It does so by
comparing one object with all the other objects via semantic text similarity. The authors
propose the Simhash [36] algorithm as an example. A threshold t is set, if the similarity
of an object to any other object o2 stays below it, it is classified as unique, else it is
classified as duplicate, see Equation (3.12).

CR(o) =
{

1 if similarity(o1, o2) < t

0 else
(3.12)

17

3. Possible Approaches

Figure 3.2: Three data quality levels. Source [35].

Objectivity

Objectivity tries to classify STIX objects with free-text fields into objective or subjective
categories. The authors suggest a thorough investigation before a sentiment algorithm is
chosen. The classification is applied to every attribute of the object, see Equation (3.13),
which are then aggregated to calculate an objectivity metric for the whole object, see
Equation (3.14).

OB(a) =
{

1 if v(a) classified as objective
0 if v(a) classified as subjective

(3.13)

OB(o) =
∑

a∈o OB(a)
|o ∩ (Ar ∪ Ao)| (3.14)

Relevancy

Relevancy quantifies the value of the object to the security analyst. It does so by matching
attribute values of certain STIX objects to respective relevancies set by the security
analyst. For example, a STIX Intrusion Set may contain the property goals set to "leak
bank information of celebrities". This increases the relevancy of the object for banking
institutions. Equation (3.15) shows the calculation of the relevancy with PVc being the
property values of the customer, PVp of the publisher and PVo of all relevant STIX
objects.

RE(o) = |PVc ∩ (PVp ∪ PVo)|
|PVp ∪ PVo|

(3.15)

Schema completeness

Schema completeness reflects how many optional attributes of an object are missing. These
attributes are not required by the STIX standard but may offer additional information
for security analysts.

18

3.2. Possible STIX Metrics

To calculate the schema completeness, all optional attributes have to be counted, see
Equation (3.16), and then the sum of all optional attributes is divided by the amount of
possible optional attributes, see Equation (3.17).

SC(ao) =
{

1 if v(ao) ̸= NULL

0 else
(3.16)

RE(o) =
∑

ao∈(o∩Ao) SC(ao)
|o ∩ Ao|

(3.17)

Syntactic accuracy

Syntactic accuracy validates the received objects against the STIX 2.1 JSON schema
provided by OASIS1. The metric expressed in Equation (3.19) only counts an attribute if
its data type and value are valid within the schema D. To get the syntactic accuracy for
the whole object, all attributes are validated and divided by all filled-out attributes of
the object, as seen in Equation (3.19).

SA(ao) =
{

1 if v(a) ∈ D

0 else
(3.18)

SA(o) =
∑

a∈o SA(a)
|o ∩ (Ar ∪ Ao)| (3.19)

Timeliness

Timeliness shows the currency of the object. The authors propose three different ap-
proaches for timeliness. TIBasic(o), Equation (3.20), uses two metrics; Volatility and
Currency. Volatility describes the number of changes applied to the object while Currency
describes the time since the last change.

TIBasic(o) = 1
(Currency(o) × V olatility(o)) + 1 (3.20)

TIStatistical(o), Equation (3.21), takes the approach of an exponential decline. It suggests
that CTI slowly loses its value with time passing, as adversarial network addresses get
reassigned, and malware falls out of use. Falloff depends on the type of object. For
example, the identity information of attackers stays mostly the same, so no decrease in
timeliness is observed.

TIStatistical(o) = exp(−Decline(o) × Currency(o)) (3.21)
1https://github.com/oasis-open/cti-stix2-json-schemas(Accessed 2022/07/29)

19

https://github.com/oasis-open/cti-stix2-json-schemas

3. Possible Approaches

TIAssisted(o), Equation (3.22), includes subjective parameters defined by a security
analyst. If the object has been modified prior to a set threshold, it is classified as
outdated; else, it is still timely.

TIAssisted(o) =
{

1 if tcurrent − tlast < threshold
0 else

(3.22)

Representational consistency

Representational consistency validates objects based on the content of attributes. It
checks if the property values do not break any logical rules; for example, a Relationship
object can not be created before the two objects it links to are created. It also cannot
link to non-existent objects. An object may have multiple conditions, see Equation (3.23),
which are then aggregated per object, see Equation (3.24).

cj(o) =
{

1 if o fulfils condition cj

0 else
(3.23)

RC(o) =
|C|∏
j=1

cj(o) (3.24)

Reputation

Reputation is a mostly subjective metric for objects. It is designed around experts’ rating
sources or data sets based on reputation. For example, a professional CTI provider may
receive a higher rating than a random company sharing their intrusions. Reputation is
calculated on a per-source base, see Equation (3.25).

RS(p) = {s | 1 ≤ s ≤ 5 ∧ s ∈ N} (3.25)

Appropriate amount of data

This metric measures if the source provides enough data for the user to accurately act
upon it. Schlette et al. [35] suggest that this metric needs more research as there is no
clear definition of the appropriate amount of data yet. The proposed metric weights the
connectedness of the report by comparing the existing relationships with the amount of
maximum possible number of relationships, see Equation (3.26).

AD(r) = |sro ∈ r|
|sdo∈r|(|sdo∈r|−1)

2
(3.26)

Aggregation of metrics

Finally, to aggregate all collected metrics, the authors propose a weighted average
summation of all scores, see Equation (3.27). The security analyst can set the weights or

20

3.2. Possible STIX Metrics

leave them empty for a default score of 1. Alternatively, the DQ can also be measured
on a report level; see Equation (3.28).

DQ(o) =
∑

d∈D di · wi∑
d∈D wi

(3.27)

DQ(r) = (
∑

o∈r DQ(o)) + AD(r) · w

|r| + w
(3.28)

3.2.4 Quantitative Evaluation of Trust in the Quality of Cyber Threat
Intelligence Sources by Schaberreiter et al.

The paper of Schaberreiter et al. [37] proposes a scoring based on STIX. Ten different
quantitative evaluation parameters are introduced, from which a total CTI source score,
the so-called Trust Indicator, is calculated.

Extensiveness

Extensiveness quantifies the amount of information a source compiles into a single
object. As mentioned in Section 3.2.3, the standard defines two property types for
objects; required and optional. The extensiveness parameter shows how many optional
parameters are filled out compared to the maximum amount of optional parameters; see
Equation (3.29).

p1 = 1
z

z∑
i=1

(
oi

max yi

)
(3.29)

where oi is the number of properties set in object i and max yi is the maximum number
of properties supported by the type of i. z represents the number of objects supplied by
the current source.

Maintenance

The Maintenance parameter indicates how often a source updates its CTI. Additionally,
the update count is weighted by the average update count of all sources within the
worldview, see Equation (3.30).

p2 =
∥∥∥∥∥ 1

z

∑z
i=1 ui

avg(p2s1, . . . , p2sn)

∥∥∥∥∥ (3.30)

where ui is the number of updated objects of the current source.

False Positives

The STIX standard allows for revocation of information by setting the parameter revoke
to true. The authors argue that simply counting the number of invalidated objects will
not result in a useful metric, as trustworthy sources will revoke outdated objects while

21

3. Possible Approaches

some lesser-maintained ones will not. Equation (3.31) will reflect this fact by weighting
the number of revoked objects of a source with the total amount of revoked objects in
the worldview.

p3 = 1 −
(

Fsx∑n
i=1 Fsi

)
(3.31)

where Fsx is the number of false positives of the current source and Fsi is the number of
false positives of source i.

Verifiability

Objects can reference its information sources via the property external_reference.
By counting these references and comparing them to the average number of references in
the worldview, see Equation (3.32), it can be deducted if a source’s references are above
average.

p4 =

∥∥∥∥∥∥
∥∥∥1

z

∑z
i=1 ri

∥∥∥
avg(p4s1, . . . , p4sn)

∥∥∥∥∥∥ (3.32)

where ri is the number of references provided by the current source.

Intelligence

According to Schaberreiter et al. [37], an important aspect in CTI is how many links
a threat intelligence parameter has. To calculate the intelligence metric, a count of
relationships attributed to the source is done as seen in Equation (3.33).

p5 =

∥∥∥∥∥∥
∥∥∥1

z

∑z
i=1 li

∥∥∥
avg(p5s1, . . . , p5sn)

∥∥∥∥∥∥ (3.33)

where li is the number of links from and to object i.

Interoperability

The interoperability score reflects the format used by the source. While Guardia uses STIX
as the format for all metrics, sources may use a different standard to convey information,
such as OpenIOC, or even no standard at all, such as Comma-seperated Values (CSV).
In most cases, the data can be transformed into STIX; this means additional workload
and may result in loss of information. Therefore, sources with different formats should
be rated lower than the ones already providing the correct format. While this parameter
could also be set empirically by a security expert rating the different standards, the
authors propose Equation (3.34) to score sources, where bi is the number of sources using
the same format as the source to be rated divided by the total number of sources.

p6 =
n∑

i=1

(
bi

n

)
(3.34)

22

3.2. Possible STIX Metrics

Compliance

Compliance checks if the source violates any restrictions set by the standard. This can
be facilitated by using a validator against the official schema of the standard. All objects
from a source are checked for compliance, and only when they are fully compliant are
they counted in ci, see Equation (3.35).

p7 =

∥∥∥∥∥∥
∥∥∥1

z

∑z
i=1 ci

∥∥∥
avg(p7s1, . . . , p7sn)

∥∥∥∥∥∥ (3.35)

Similiarity

The similarity parameter shows how much the source contributes to the overall worldview.
It does so by calculating the overlap between the sources’ objects and the objects of the
worldview, see Equation (3.36). For objects to be considered similar or equivalent, an
additional algorithm has to be chosen to find two objects’ similarity parameter. Also, the
threshold to consider two objects equivalent must be set empirically by a security expert
as no two objects from different sources will be 100% the same. The authors propose the
two text similarity algorithms Jaccard [38] and Cosine Similarity.

p8 = 1
z

z∑
i=1

(yi) (3.36)

Timeliness

Timeliness indicates how fast the source publishes CTI compared to the other sources
in the worldview. Using the similarity metric from above, it can be determined if
another source has already published the intelligence provided by the source. If it was,
Equation (3.37) describes the calculation of the timeliness parameter, with min ti being
a timestamp of the CTI first being spotted and (ts)i being a timestamp of the source
providing the CTI.

p9 = 1
z

z∑
i=1

min ti

(ts)i
(3.37)

Completeness

The completeness parameter indicates the contribution of the source. It shows how much
of the worldview is covered by the source. Equation (3.38) details the calculation, with
|B| being the total number of objects in the worldview and |A| being the number of
objects found with different ids and not similar to the objects of the source.

p10 = |B| − |A|
|B|

(3.38)

23

3. Possible Approaches

Aggregation of metrics

Finally, the collected metrics must be aggregated into a single, meaningful score. This
score is called trust indicator by the authors. Besides a weighted aggregation of current
parameters, the equation also includes an ageing factor D using previous trust indicators
of the source. In Equation (3.39), pn represents each parameter of source sx at time t.
The weighing factor ω weighs parameters differently, based on set weights by the security
analyst. The calculation of the trust indicator should be done in regular intervals, with t
being dependant on the use case, i.e. how often sources are updated.

TIsx(t) = D ∗ TIsx(t − 1) +
∑m

n=1 ωn ∗ (pn)sx(t)
D +

∑m
n=1 ωn

(3.39)

3.3 Possible API Metrics

Besides the discussed STIX metrics, two additional parameters are collected; time taken
by a service to respond, named Duration and cost per call, aptly named Cost. Both of
these metrics are not included in the STIX bundle. Instead, they are generated by the
Application Programming Interface (API) call to the services. Therefore, they need to
be aggregated from the technology used to communicate with the CTI sources.

3.3.1 Duration

The duration is the amount of time a service takes to respond to a request, where a lower
response time should yield a higher score. However, the response time metric should
not be linear. For example, fluctuations in an API between 0.5 and 1.0 seconds should
be barely noticeable in the score while higher durations, for example, 10 to 15 seconds,
should be scored more severely; these long response times may be annoying for the user.

A metric to score durations was already introduced as Timeliness by multiple algorithms
in Section 3.2. Although these metrics are focused on STIX, they can be easily modified
to be also used with response times of API calls. Schlette et al. [35] introduce the metric
TIStatistical(o) with an exponential falloff for objects. By changing the type of o from
STIX object to API Call, the metric can also be used for the duration, as can be seen
in Equation (3.40). The falloff function Decline(o) can be mapped to different types
of services, as some types may aggregate more data and naturally take longer. This
duration factor for each kind of service is not known. Also, there exists no classification
that separates CTI sources into clearly defined classes. Therefore, mapping guidelines
would need to be established and then the sources in the architecture would need to be
manually labelled. If no differentiation between sources is possible, a generic decline can
be set.

DU(s) = exp(−Decline(s) × Currency(Reqs)) (3.40)

where s represents a service and Reqs is the average duration of a call to the service for
a specific playbook run.

24

3.4. Discussion

3.3.2 Cost

Some APIs may not offer their data for free, instead offering pay-per-call payment plans.
This numeric value is not inherently visible in the STIX bundle or in the API request.
Therefore, it must be entered manually into a database and mapped to each request. As
the monetary value itself is a good metric, recalculating it into a numeric metric may
add abstraction to an otherwise clear metric. Additionally, a generic recalculation is
not feasible as the reasonable amount of money spent on a service is highly dependent
on its offered features; a simple whois service providing information about webpages
has a lower reasonable price than a service offering detailed information about different
vulnerabilities for a specific device.

Assigning the cost for subscription-based services poses a challenge which needs further
research. An initial approach is to observe or estimate the usage of the service in the
time span of the subscription cycle. Then, the cost of a single run can be approximated
by dividing the total cost of a subscription cycle by the usage of the service within that
subscription cycle.

A reasonable approach is to visualise the cost of an endpoint on a graphical scale.
Visualizing the combined cost for one playbook run, combined with the additional
information supplied by the STIX metrics, a security analyst is able to determine if a
service provides adequate intelligence for its price.

3.4 Discussion

Knowing what approaches are currently proposed in the literature, it is possible to
select metrics fulfilling the requirements postulated in Section 3.1, refer to Table 3.3.
Additionally, some papers propose the same metrics; these can be merged.

3.4.1 FeedRank

FeedRank fails on multiple requirements. As it relies on multiple snapshots to measure
what source is the original creator of CTI, it does not work with the single request setup
used by Guardia. Additionally, it is also not extensible; while adding metrics beside it and
doing a weighted sum is possible, there is no way to integrate them into the FeedRank
itself.

3.4.2 Trust and Quality Tool

The three metrics proposed by TQM are all based on value mappings. For example, the
Extensiveness metric maps a ranging number of attachments to a specific value. This
drastically reduces comparability, as objects having more than three attachments are
not scored higher than ones with exactly 3, leading to the possibility of having multiple
sources receiving the same score. This would mean that additional metrics would have
to be added to rank sources with a more fine-grained granularity.

25

3. Possible Approaches

Metric Name Snapshot Extensible Without human Continous
FeedRank - -
Completeness (TQM) -
Extensiveness (TQM) -
Freshness (TQM) -
Concise Representation -
Objectivity -
Relevancy -
Schema Completeness
Syntactic Accuracy
Timeliness - G#
Representational consistency
Reputation - G#
Appropriate amount of data
Extensiveness
Maintenance -
False Positives -
Verifiability
Intelligence
Interoperability -
Compliance
Similarity
Timeliness -
Completeness

 = provides property; G# = partially provides property; - = does not provide property;
All metrics can rate STIX and are comparable. For brevity, these columns have been
omitted.

Table 3.3: Overview of metrics and their fulfilment of requirements.

3.4.3 Approach of Schlette et al.
The approach of Schlette et al. [35] is further discussed in this section including the
explanation of why some metrics can not be reasonably implemented for use with SOAR
platforms.

Concise representation

Concise representation uses a binary classification for objects, as they are either unique
or duplicate. On a single object, this violates our requirement for a continuous metric.
The metric could possibly be aggregated for a source by assigning unique and duplicate
a numeric value and averaging all objects from the source. However, this mirrors the
approach Similarity suggested by Schaberreiter et al. [37] which uses more elaborate
scoring. Therefore, the metric does not add additional information when added to the
implemented framework.

Objectivity

While the objectivity measurement could in theory be continuous as it is applied to
multiple properties of an object, it is argued that with STIX it will still result in binary

26

3.4. Discussion

classification. The reason for this is that STIX objects rarely offer more than one free-text
field within a single object type. Most STIX objects only contain a single property with
free-text, description. Thus, with only a single property scoreable, objects would not
receive a continuous score.

Relevancy

The relevancy metric proposed is tied closely to manual input from security analysts due
to the fact that for each customer, their relevant sectors of work must be defined. Then
these sectors are matched against the sectors mentioned in the received STIX bundles,
resulting in a metric value only relevant to the current customer. While this metric has
its relevance and may be implemented separately from the analyzer, it was decided to
not include it in the metrics for the architecture.

Timeliness

Three different timeliness metrics are proposed by the work [35]. TIBasic(o) uses Volatility
within its formula; this variable is the number of changes to the object in a specific period.
This violates our requirement of being able to handle data on a snapshot basis.

TIAssisted(o) sets a fixed threshold and assigns a score based on that threshold, which
leads to the score being binary; either an object is above or below the value. This violates
the continuous requirement.

TIStatistical(o) is the only timeliness metric that could potentially be used by the analyzer
framework. However, as CTI is always fetched just-in-time for cases, and the STIX
property created represents the time of object creation, the currency of objects is
always now. One exception to this rule are identities, as these are persisted when they are
created. However, identities have a Decline(o) set to a constant, as identity information
potentially never gets outdated.

Reputation

The reputation metric fails two requirements. Firstly, every source needs to be rated by
a human based on subjective factors at a certain point in time. Thus, to stay relevant,
reputation would need to be updated regularly to reflect changes in reputation for
different services. Additionally, this may impose the subjective view of the rating security
analyst onto another, different security analyst, even though they could have their own
reputational view of the source.

3.4.4 Approach of Schaberreiter et al.

This section discusses the metrics proposed by Schaberreiter et al. [37] and why some
may not be viable for integration within SOARs.

27

3. Possible Approaches

Maintenance

Maintenance takes the number of updates applied to the object and weighs them against
the average number of updates in the worldview. However, this methodology can not be
applied within the domain of SOAR platforms, as playbooks are run once and thus CTI
is just gathered a single time, not leaving the possibility of updated versions.

False Positives

Similar to Maintenance, False Positives also rely on gathering CTI more than once
with sources revoking obsolete intelligence. However, with SOAR platforms, the only
possibility of receiving revoked objects would be if they are returned within the single
request sent while the playbook is run. This is unlikely, and even if revoked content is
received it can simply be discarded, resulting in fewer objects attributed to the source and
thus receiving a worse rating by different metrics, this maintenance metric was omitted
from the analyzer.

Interoperability

Interoperability requires a manual assignment of format to each source present in the
worldview. Additionally, rules need to be defined to specify how different formats are to
be described. For example, some endpoints may return structured, proprietary formats;
however, they should not be grouped together into the same format. To define an
extensive and clearly defined taxonomy and then assign all available services within the
worldview a category is out of the scope for this work.

Timeliness

Timeliness ranks different sources based on their speed of providing relevant CTI data.
The problem with this metric is once again the nature of the SOAR platforms’ playbooks,
in which all services are only queried once, all at the same time. Thus, no service can
provide CTI faster than a different service. A similar metric can be gathered from the
response time of different services; however, this metric can not be discerned from STIX
data and must instead be calculated via different means; see Section 3.3.1.

3.4.5 Merging metrics

Filtering metrics that can not viably be used within the Guardia architecture leaves
ten viable metrics. This number can be further reduced by merging similar or identical
metrics of different approaches.

Schema Completeness - Extensiveness

Schlette et al. [35] and Schaberreiter et al. [37] both propose the use of a metric scoring
the completeness of an object, i.e. how many optional properties are filled out. Both

28

3.4. Discussion

calculate this metric by dividing the number of set optional properties by the maximum
possible number of optional properties.

Syntactic Accuracy - Compliance

Both metrics score the objects’ validity against the STIX standard. While Schlette et
al. [35] score every object individually, Schaberreiter et al. [37] approach only considers
the whole source. Based on the requirements, the second approach is more fitting for
Guardias use-case.

Appropriate amount of data - Intelligence

Even though both metrics weigh part of the input differently, both try to accomplish the
same goal with the same input. The connectedness of the report is quantified in both
approaches. Schlette et al. [35] weigh the existing relationships with the maximum possible
number of relationships based on the existing objects in the report while Schaberreiter
et al. [37] calculate the average amount of connections per object into account. The
approach of Schaberreiter et al. [37] yields higher values as the divisor is smaller than in
the Schlette et al. [35] metric, so this approach was chosen to increase the influence of
the metric in the final score.

3.4.6 Refining Metrics

Some metrics described contain the metric itself in the calculation. For example, Intel-
ligence p5 includes the average of all p5 metrics. This would lead to an infinite loop;
therefore, it is assumed that the formula can be split into two formulas, see Equation (3.41)
and Equation (3.42).

p5si =
∥∥∥∥∥1

z

z∑
i=1

li

∥∥∥∥∥ (3.41)

p5 =
∥∥∥∥ p5si

avg(p5s1, . . . , p5sn)

∥∥∥∥ (3.42)

Additionally, while some metrics are to be normalised, no formula is introduced to
accomplish this task. As seen in Equation (3.42), the average of all sources is used to
divide the metric of the current source. However, this will lead to a metric value over 1
when the metric of the current source is above the average. It is therefore proposed to
switch avg() with max(). This captures the value of the metric to between 0 and 1, as
required in Schaberreiter et al. [37]. For example, the final formula for p5 is expressed in
Equation (3.43).

p5 =
∥∥∥∥ p5si

max(p5s1, . . . , p5sn)

∥∥∥∥ (3.43)

29

3. Possible Approaches

Furthermore, the ground truth of Schaberreiter et al. [37] must be altered to include SCOs
as well, as SOAR platforms use them regularly. Therefore, Equations (3.9) and (3.10)
are altered by adding SCOs to the formula, see Equations (3.44) and (3.45). SCOs also
contain a specific subset of required and optional attributes, so no other alterations are
needed.

SDO, SRO, SCO ⊆ (Ar ∪ Ao) (3.44)

O = {o|o ∈ (SDO ∪ SRO ∪ SCO)} (3.45)

3.5 Final Metrics
Finally, after excluding all unviable metrics, merging duplicates and refining the remaining
metrics from different approaches, Table 3.4 reflects the final metrics, which can be used
within the framework to evaluate STIX bundles from different sources.

Metric Formula

Extensiveness p1 = 1
z

∑z
i=1

(
oi

max yi

)
Compliance p2 =

∥∥∥ p2si

max(p2s1,...,p2sn)

∥∥∥
Representation Consistency p3 =

∏|C|
j=1 cj(o)

Verifiability p4 =
∥∥∥ p4si

max(p4s1,...,p4sn)

∥∥∥
Intelligence p5 =

∥∥∥ p5si

max(p5s1,...,p5sn)

∥∥∥
Similarity p6 = 1

z

∑z
i=1(yi)

Completeness p7 = |B|−|A|
|B|

Duration p8 = exp(−Decline(s) × Currency(Reqs))

Table 3.4: The final metrics and their corresponding formulas.

where p2si =
∥∥∥1

z

∑z
i=1 ci

∥∥∥, p4si =
∥∥∥1

z

∑z
i=1 ri

∥∥∥ and p5si =
∥∥∥1

z

∑z
i=1 li

∥∥∥.

30

CHAPTER 4
Methodology

This chapter introduces the methodology used to implement the metrics formulated in
Chapter 3. First, the general architecture of the implemented CTI rating framework
called Enodo, latin for analyze or unravel, is explained. Then, the playbook execution
via Dagster is described. Finally, the components are described in detail.

4.1 Overview

The current implementation of Guardia has services added at the discretion of software
architects. The services must be manually reviewed for relevance to the pipeline. Possible
charges for non-free APIs are only considered at their implementation which leads to the
problem of developers not being familiar with these APIs and using them as disposable
assets without considering their impact on cost, run time length or even necessity for the
current pipeline workflow.

4.2 Architecture

Proposed is a system that hooks into the existing pipeline compositor, evaluating the
results of executed services according to the metrics described in Section 3.4, persisting
them and using an additional recommender engine offering easily digestible graphs
to security analysts. Figure 4.1 shows an overview of the architecture, including its
interfacing with external endpoints. Notably, the hook is the only component embedded
within Dagster and is therefore written in Python, the other components are implemented
in Go. Figure 4.2 shows the database schema which is automatically created by the
Object–Relational Mapping (ORM) tool contained within the analyzer.

31

4. Methodology

triggers

Dagster

GraphQL-
API

visualizes

Frontend

scrapes

Scraper triggers

calls

Hook

Analyzer

persists into accesses

API

DB

Internal

External

Figure 4.1: The Enodo architecture.

4.3 Playbook Execution in Detail

To understand where the STIX graph comes from and where other metrics are originating
from, the example playbook run from Section 2.6 is explained from the technical backend
view.

4.3.1 Pipeline Definition

For scheduling and executing playbooks, the Guardia architecture uses Dagster, a platform
for data orchestration and workflow execution. Workflows can be defined in code via
Python files. These files are read and validated by Dagster at initialisation time and if
no errors in the definition are found, the playbooks in form of workflows can be executed
by calling API endpoints. These workflows now not only contain the calls to the CTI
services but also the parsing of input data, extraction of possible attachments, validation
of content and packaging of results into STIX bundles again.

These workflows contain multiple building blocks, called Ops by Dagster. These blocks
can be designed generic and thus be reused in multiple workflows. They also allow for
closed inspection of data in- and output within a workflow and crucially, can be timed
from begin of execution to the return of output.

32

4.4. Hook

varcharapi_id
varcharmetric_id

api_metrics

varcharname
varchardagster_name
varcharurl

double precisioncost
varcharapi_timing

varcharid

apis

varcharrun_id
double precisiontrust_indicator
double precisionextensiveness
double precisionverifiability
double precisiontotal_verifiability
double precisionintelligence
double precisiontotal_intelligence
double precisionsimilarity
double precisioncompleteness
double precisionduration

varcharid

metrics

double precisionduration
varcharmetric_timings

varcharid

timings

metric_timings:id

metric_id:id

api_timing:id

api_id:id

Figure 4.2: The Enodo database structure.

4.3.2 Pipeline Execution

For each playbook, Dagster builds a graph with all ops connected by input and output.
Taking the example from Section 2.6, the playbook consists of multiple stages of extraction,
enrichment and aggregation. From Python code files, Dagster creates workflows as seen
in Figure 4.3. These workflows can then be triggered by a simple API call containing the
required inputs defined within the source code of the respective playbooks. Dagster then
automatically schedules and executes the Ops.

4.4 Hook

The hook component is the smallest part of the Enodo architecture. Dagster allows
for hooks, also called sensors within Dagster, to be attached to jobs. These sensors
are then automatically triggered whenever the pre-configured conditions are met. The
requirements for the metric trigger are simple; whenever a playbook successfully finishes,
Enodo should aggregate and analyze various metrics and return either success or failure
to the Dagster frontend. As both scraper and analyzer accept API requests, the hook
can call the scraper endpoint first and pipe the result into the analyzer endpoint. If

33

4. Methodology

Figure 4.3: Dagster workflow as shown on the Dagster Graphical User Interface (GUI).

that action also succeeds, the analysis was successful and can be shown as such in the
frontend, as seen in Figure 4.4.

4.5 Scraper

The scrapers’ responsibility is to aggregate the input data needed by the analyzer. Follow-
ing metrics shown in Table 4.1 need to be evaluated and are therefore the responsibility
of the scraper to fetch, with its source listed beside it.

Item Source

Case ID Dagster API
Service Timings Dagster API
STIX Bundle Guardia API

Table 4.1: Items needed for the analyzer and their sources.

34

4.5. Scraper

Hook Workflow

Hook Scraper Analyzer

Pipeline finished

Request run information

Analyzer JSON

Request analysis

Success or Failure

Figure 4.4: Sequence diagram of the hook workflow.

As the caseId is not known by the hook, the scraper needs to fetch the Dagster API
first before requesting the STIX bundle from the Guardia API. The resulting workflow is
shown in Figure 4.5.

4.5.1 Accessing the Scraper

The scraper can be activated by accessing it via the API. It offers a single endpoint at
/scrape which accepts POST requests containing the runId of the Dagster workflow
run, see Listing 4.1.

POST http://enodo-scraper/scrape
Accept: application/json
Content-Type: application/json

{
"runId": "7fa62179-2182-4b7d-80cf-5b973887e727"

}

Listing 4.1: Example POST request for the scraper.

35

4. Methodology

Scraper Workflow

Hook Scraper Dagster API Guardia API

Request run information

Request workflow data

CaseID, GroupingID, Durations

Request STIX bundle

STIX bundle

Analyzer JSON

Figure 4.5: Sequence diagram of the scraper workflow.

4.5.2 Scraping the Workflow Metadata

Dagster employs a GraphQL API to serve information about workflows and runs. This
allows for a single, selective query to fetch all information needed for the analyzer. One
important aspect of the scraper is the matching of the Dagster workflow run with its
corresponding runId to the resulting STIX bundle with its caseId. Additionally, due
to the nature of how the STIX bundles are fetched by the Guardia API, the originating
grouping node id has to be grabbed from the workflow run.

To satisfy these requirements, various features of Dagster need to be used besides its
main functionality of executing workflows, namely tags and materializations.

Tags Dagster allows for tagging of workflow jobs. Tagging can happen while a workflow
is executed and may be user-defined. Thus, for the scraper to successfully match runId
with caseId, the underlying playbook code must tag the workflow runs with the correct
case id used for the STIX bundle.

Materializations Materializations, also called AssetMaterialization in Dagster,
are entities that are created within workflows but are external to Dagster, such as
database insertions, push notifications or the creation of STIX bundles. Materializations
consist of a fixed key, identifying the materialization throughout different runs, and a
key-value pair map containing additional metatags. This map can then be used to convey
information for the scraper by setting an entry with key service and value set to the

36

4.6. Analyzer

name of the API being called. This allows the scraper to more efficiently query services
by only querying for AssetMaterializations within the run and then filtering out
materializations without a service key set.

After facilitating these changes in the playbook code, tagging of workflow runs and
materializing API responses, the scraper is able to fetch all the required informa-
tion with a single GraphQL call to Dagster. The response then contains a list of all
AssetMaterializations within the workflow run. If the AssetMaterialization
contains the metadata entry service, the duration of the API response time is calcu-
lated by subtracting the start time of the op from the end time. As services may be
called multiple times in a single workflow, it is necessary to save all duration into a list
mapped to the name of the service.

4.5.3 Scraping the STIX Bundle

After the scraper has fetched the corresponding caseId from the Dagster endpoint, it
can download the completed, deduplicated bundle from a Guardia API endpoint. The
endpoint receives the caseId, nodeId and returns a STIX bundle. This bundle is
then copied into the scrapers’ response and returned to the hook to be forwarded to the
analyser. An example response is demonstrated in Listing A.1.

4.6 Analyzer

Dagster allows for functions to be called after successful or unsuccessful pipeline runs,
called hooks. The functional content of these hooks can be defined by the developer; thus
they can also call external programs. This functionality can be used to connect to the
analyzer. These hooks also allow for additional metadata to be passed such as the job
name itself, possible thrown exceptions and the operation output itself [39]. The output
is presented in STIX format, which can then be analysed according to the formulated
metrics. These metrics are aggregated based on the source. In Guardia, each external
source is represented by a report linking to all objects received from the source.

The analyzer implements the algorithms described in Section 3.5. Serving as the focal
point of this work, it analyses received STIX bundles by calculating the aforementioned
metrics. To reduce redundancy in source metadata and as the historic change of metric
values is also important, the calculated metrics are also persisted in a database. The
analyzer is also responsible for storing data not directly derived from the analyzer such
as metadata from each source, i.e. endpoint Uniform Resource Locator (URL) or cost
per call.

4.6.1 Accessing the Parser

The parser can be accessed similarly to how the scraper in Section 4.5.1 is accessed.
Differing from the scraper is the input for the endpoint /analyze. The JSON response

37

4. Methodology

from the scraper can be directly piped into the request body for the analyzer. An example
of a request body can be seen in Listing A.1 in the appendix.

As the analyzer persists all calculated metrics into the database, nothing is returned in
the response except a Hypertext Transfer Protocol (HTTP) status code. Possible status
codes are 500 if an internal error has occurred, i.e. the database for persisting the metrics
is not available, 400 if the request is not valid, i.e. does not conform to the expected
JSON structure, or 200 if the request was successful.

4.6.2 Parsing

Parsing the request is done in two steps. First, the JSON body is parsed and split into
the three components it contains; the runId, the STIX bundle and the service duration
map. Secondly, the bundle itself is decoded. This happens with help from an external
library called libstix2 [40]. The library allows for easy parsing of JSON documents into
STIX bundles. Some minor changes had to be made to the library to incorporate features
required by Guardia. These changes are described in Section 4.6.7. After the parsing is
completed, the bundle can then be fed into the analyzer.

4.6.3 STIX Metric Calculation

The analyzers’ main purpose is to calculate the formulated metrics in Section 3.5 and
persist them and the resulting Trust Indicator into the database.

Calculate Extensiveness

The extensiveness calculation for a source is straightforward, as for each object the
amount of existing properties is divided by the amount of possible properties. This value
is then added to a sum variable. This continues in a loop until all objects of a single
source are evaluated, then the sum variable divided by the number of objects of that
source is returned, see Algorithm 4.1.

Algorithm 4.1: Calculation of Extensiveness.
Input: All objects of a single source OS
Output: Extensiveness p1

1 for O ∈ OS do
2 ExistingProperties := GetExistingProperties(O);
3 PossibleProperties := GetAllProperties(O);
4 Sum += length(ExistingProperties) / length(PossibleProperties);
5 end
6 p1 := Sum / length(OS);
7 return p1

38

4.6. Analyzer

Calculate Compliance

The compliance calculation was not implemented within this framework. This was due
to Guardia currently transforming all API responses from different formats received from
the services to STIX. In this process, a validator is used to confirm the implemented
transformer is returning valid STIX. In turn, this means Enodo will never receive invalid
STIX, as the validator used would be the same validator as in the tests of the transformer.

Calculate Representational Consistency

As with compliance, the transformer will validate any incoming data before persisting
it within Guardia, meaning it will never reach Enodo as it only receives data already
contained within the system. This limitation could be overcome by passing invalid STIX
still on to Enodo. However, this change was out of scope for this thesis.

Calculate Verifiability

Verifiability can be calculated by simply measuring the length of the External-
References list. The required AverageReferences are calculated in an additional
function. As the average number of references does not change for a bundle, regardless of
which source is currently being evaluated, it can be calculated once in the first call and
then cached. When the verifiability is calculated for other sources, this average number
value can then be accessed from the cache, reducing the number of calculations done and
speeding up the runtime. Refer to Algorithm 4.2 for said implementation.

Algorithm 4.2: Calculation of Verifiability.
Input: All objects of a single source OS
Output: Verifiability p4

1 Function AverageExternalReferences():
2 if GlobalAverageExternalReferences = Undefined then
3 for O ∈ OBundle do
4 TotalReferences += length(O.ExternalReferences);
5 end
6 GlobalAverageExternalReferences := TotalReferences / length(OBundle);
7 end
8 return GlobalAverageExternalReferences;
9 ;

10 for O ∈ OS do
11 Sum += length(O.ExternalReferences)
12 end
13 p4 := Sum / length(AverageExternalReferences() * length(OS));
14 return p4

39

4. Methodology

Calculate Intelligence

The metric Intelligence measures how many relationship objects a source provides. The
more the provided objects are connected together, the higher the intelligence score. The
metric is calculated once for the whole bundle; subsequent requests for a source simply
access the saved value for each service.

The method itself iterates over all objects contained within the bundle. Depending on
the type, all connections from that object to another object are counted. For example,
the Sighting object in STIX contains following additional properties referring to other
objects: Sighting of Ref, Observed Data Refs, Where Sighted Refs. Observed Data Refs
and Where Sighted Refs are both reference lists; therefore the length of each list is used
for the reference count. The final count of each object is then added to its sources’ count.
This is facilitated by a map, containing the service name as key and the current reference
count as value.

After all objects are accounted for, the intelligence score for each source is calculated by
taking the number of relationships of a source and dividing it by the number of STIX
objects of the source, as seen in Algorithm 4.3.

Algorithm 4.3: Calculation of Intelligence.
Input: Source S
Output: Intelligence p5

1 Function IntelligenceMap():
2 for O ∈ OBundle do
3 begin
4 switch O.Type do
5 case Relationship do
6 Connections[O.SourceRef] = Connections[O.SourceRef] + 1;
7 end
8 . . .
9 end

10 end
11 end
12 for S, ConnectionSum ∈ Connections do
13 Intelligence[S] = ConnectionSum / length(ObjectsOfSource(S));
14 end
15 return Intelligence;
16 p5 := IntelligenceMap[S];
17 return p5

40

4.6. Analyzer

Calculate Similarity

Similarity measures how many objects from other sources are similar to an object of the
current source. The metric is implemented differently than described in the paper [37] in
that text similarity algorithms are not used on the whole object, but instead on each
property where fitting. This allows for more fine-grained control of how properties of
different objects are handled. For example, some properties may contain lists. When
simply comparing two lists containing the same contents, but in a different order, the
similarity index may vary drastically. However, the order of two lists should not decide
their similarity, thus lists must be checked for similarity by checking if each item of one
list is contained within the other list.

Calculating Similarity for all objects To calculate the similarity of a source, for
each object, a similarity map is created containing the similarity of the current object to
the object referenced by the key of the map. The sum of all similarities is then divided
by the number of objects provided by the source as seen in Algorithm 4.4. This value
represents the similarity metric, the average similarity of objects by the source compared
to the worldview. The similarity map calculation is described in the following paragraph.

Algorithm 4.4: Calculation of Similarity.
Input: Source S, Weight Map WeightMap
Output: Similarity p6

1 for O ∈ OS do
2 Similarities += Avg(GetSimilarityMap(O));
3 end
4 p6 := Similarities/length(OS);
5 return p6

Calculating the similarity map Algorithm 4.5 compares the current Object A with
all objects within the worldview. It first filters all objects which are not the same type as
A, as they cannot be similar. It also only compares A against objects from other sources.
If there are objects which are of the same type and not from the same source, they are
compared by the function GetObjectSimilarity() and the result is saved into a
map. This map is then returned as the similarity map.

Calculating Similarity between two objects Algorithm A.1 in the appendix
compares two objects; object A, created by the current source, and object B, taken from
the worldview and created by another source. When comparing two SDOs, the existing
properties of both objects are discerned. Then, the properties of A are iterated over.
First, B is checked if the property even exists there. If not, there is nothing to compare
the similarity to and the next property of A can be checked.

41

4. Methodology

Algorithm 4.5: Calculation of the similarity map.
1 Function GetSimilarityMap(OT his):
2 for OOther ∈ OBundle do
3 if OOther.T ype ̸= OT his.T ype||OOther ∈ S then
4 Skip;
5 end
6 SimilarityMap[OOther] = GetObjectSimilarity(OT his, OOther);
7 end
8 return SimilarityMap;

If B also contains the property of A, the property key acts as a switch between different
calculations of the similarity. As different keys have differently typed values contained in
them, the key is used to discern which similarity calculation must be used on the current
property. This key-based switch is mostly used for atypical keys; for example External-
References is a list containing multiple ExternalReference entries, which are
JSON structures in-memory. This is unique for this key and thus a dedicated function is
implemented, comparing the values of both objects A and B.

However, most property values are lists of atomic types, numbers, strings or other atomic
types. If the property is of atomic value, both values of A and B can simply be compared
via an appropriate method. For string properties, the Jaccard [38] index is used, for
numbers, Equation (4.1) is applied.

SimilarityNumber = 1 − Max(A, B) − Min(A, B)
Max(A, B) (4.1)

For slices, while they may contain a multitude of STIX types, they are all represented
as string within the code. A notable exclusion is kill_chain_phases, this case is
handled by the key-based switch mentioned above. For lists, each element contained
within the list of object A is compared with every object in the list of the object B via
the Jaccard index. Notably, for lists containing references to other objects, the id part
is removed from the string. For example, identity-2c4be6e6-2c99-443f-9ab1-
-24ecedb026d5 gets shortened to identity. This is due to the fact that different
sources may reference different objects even though they contain the same information.
By removing the unique part of the reference, two objects pointing to the same type but
different objects will still yield a high similarity value.

After all similarity values have been calculated, an optional weighting factor for each
is applied; with some objects, a single property may indicate similarity much more
than other properties of the same object. For example, for each object, the modified
property is also compared; however, this value may differ between two sources, even
though the other content matches to a high degree. If no weight is set, a default weight
of 1 is applied.

42

4.6. Analyzer

Finally, the sum of all similarity values is calculated and divided by the number of
properties shared between both objects, as can be seen in Algorithm 4.6.

Algorithm 4.6: Calculation of object similarity.
1 Function GetObjectSimilarity(OT his, OOther):
2 SimilarityMap := CompareProperties(OT his, OOther);
3 for Property ∈ SimilarityMap do
4 SimilarityMap[Property.Name] = SimilarityMap[Property.Name] *

WeightMap[Property.Name];
5 Divisor += WeightMap[Property.Name];
6 end
7 Similarity := Sum(SimilarityMap.Values)/Divisor;
8 return Similarity;

Calculate Completeness

The completeness calculation, see Algorithm 4.7, uses the similarity map calculation
described in Algorithm 4.5. For each object of a source, this similarity map is calculated.
Then, the highest similarity within the map is compared with a previously set threshold;
if the similarity is higher, it is assumed that both objects contain the same information,
albeit from different sources. In the end, the number of similar objects is divided by the
total number of objects originating from other sources.

Algorithm 4.7: Calculation of Completeness.
Input: All objects of a single source OS
Output: Completeness p7

1 for O ∈ OS do
2 SimilarObjectsValues := GetSimilarityMap(O);
3 MostSimilarObjectValue := Max(SimilarObjects);
4 if MostSimilarObjectValue > SimilarityThreshold then
5 SimilarityCount = SimilarityCount + 1;
6 end
7 end
8 p7 := SimilarityCount / (length(OBundle) - length(OS));
9 return p7

Calculate Indicators

As all metrics have the same input and output, a generic interface is introduced which
metric implementations need to follow. This eases portability and reusability, as this
interface allows for the simple addition of further metrics without changing the existing
code much; the metric simply needs to be added to the list of metric functions and

43

4. Methodology

have its weight added to the Trust Indicator calculation. Algorithm 4.8 describes the
calculation of each metric value.

Algorithm 4.8: Calculation of an indicator.
Input: Source name S
Output: Map of metric values I
Data: metrics is a list of metric objects with name and the corresponding

function set.
1 OS := GetObjectsOfSource(S);
2 for metric ∈ metrics do
3 I[metric.name] = metric.function(OS);
4 end
5 return I

Calculate Duration

The calculation of the duration metric is also done by the analyzer. The durations are
not contained within the STIX bundle; instead, they are received from the scraper as
a list of durations. As seen in Algorithm 4.9, the average of the list is calculated and
inserted into the formula describing the duration metric.

Algorithm 4.9: Calculation of Duration.
Input: List of duration values D
Output: Duration p8

1 average := Avg(D);
2 p8 := Exp(Decline * average);
3 return p8

4.6.4 Trust Indicator

Depending on the customers’ preferences, weights can be used to prioritize certain metrics
when calculating the final Trust Indicator score. Each indicator is assigned a weight
between 0 and 1, with the requirement that the sum of all weights equals 1. Finally, the
sum of all weighted indicators is returned as the trust indicator.

The original formula proposed by Schaberreiter et al. [37] includes two variables which
are unused in the calculation of the trust indicator within Guardia; the ageing factor D
and the previous trust indicator TIsx(t − 1). Both of these variables take the historic
trust indicator for the source into consideration. However, this is not applicable for
the use case of Guardia, as the trust indicator is calculated for different inputs, thus
the possibility of it varying greatly is given. For example, if a source lacks CTI for the
banking sector, a following run concerning the aviation sector should not be affected by
it. If the previous value of the trust indicator is used, the rating for the current run

44

4.6. Analyzer

may be affected in incomprehensible ways. Thus, the formula used to calculate the trust
indicator within Guardia is described in Equation (4.2).

TIsx(t) =
∑m

n=1 ωn ∗ (pn)sx(t)∑m
n=1 ωn

(4.2)

4.6.5 Duration Mapping

As mentioned in Section 4.6.2, besides the STIX bundle and the run id, the request
also contains a service duration map, containing the run times of all Dagster ops which
contact external service APIs. A problem faced here is the inconsistency between the
name of the service in Dagster and the created identity for a service within STIX. For
example, in the Python code for Dagster, the ip-api service may be called IpApi while
its identity in STIX is called ip-api.com. To be able to correctly attribute durations
to services, an additional row within the metrics table is added with the corresponding
name of the service within Dagster.

4.6.6 Database Persistence

After the metrics have been calculated, they are persisted in a database. This is
accomplished by the Analyzer component with the help of an ORM tool.

For each service, it is checked if it already has an entry in the database. If it has, this
entry will be referenced in the metrics to be inserted. Else, the service will be created
in the database, with some rows left empty such as cost or url. These values are
not contained within the STIX bundle and must be entered by the security analyst or
software architect.

Finally, the durations and metrics are persisted by creating an ORM metric object and
assigning it the values calculated by the analyzer.

4.6.7 Library Additions

The recommender extensively uses the Go library freetaxi/libstix2 [40]. While it
provides extensive base functionality, some areas vital for Guardia are lacking; custom
object decoding and SCOs.

Custom object decoding in bundles is needed by Guardia as some new types of objects
have been introduced by Nextpart which are not part of the default objects part of the
standard. Initially, libstix2 only decoded pre-defined objects when decoding a bundle.
An additional method allowing the passing of custom object decoders was added.

SCO objects were lacking in the library; this is due to the fact that they are mostly unused
in other STIX usages, such as Trusted Automated Exchange of Intelligence Information
(TAXII) services [41]. However, SOAR platforms make extensive use of SCO objects,
as most input data is described as SCOs, such as email messages or domain names.

45

4. Methodology

Thus, a variety of SCO objects is introduced into the library to allow for the correct
representation of input data within Guardia.

4.7 API
As the database table itself is not useful to either the user nor the pipeline architect,
an additional service called Recommender is added. The API is implemented with
GraphQL and included within the analyzer as it already has a connection to the database,
although eventually to avoid bottlenecks, the API component may be implemented as an
independent service. The used ORM tool furthermore provides support for GraphQL
queries, thus the inclusion of an API is easily maintainable. The API includes a history
of the calculated trust indicator but also includes additional metadata for each source
such as API cost, company or endpoint. This allows the architect to further enhance
their knowledge of the different APIs. Also, having an overview of the different sources
allows for direct comparison between competing sources and recognition of up-and-coming
sources.

4.8 Frontend
To ease development and to visualise the metrics in a comprehensible way, a frontend is
implemented. This frontend accesses the endpoint provided by the analyzer. Thanks to
a dropdown, runs can be filtered by their case id.

This frontend is written in Vite and Svelte, which is also used in the Guardia framework.
Using the same technologies enables the possibility of easily merging the external Enodo
frontend into the Guardia frontend for the customers to use. In its current iteration, the
GUI is aimed at debugging and reviewing changes to the metric algorithms. It can also
be used by security analysts to compare multiple services against each other. However,
to be suitable for customers, the metrics must be integrated into the frontend and further
explained for customers to make sense of them.

Figure 4.6 shows the frontend as seen from within a browser. Below the logo and title of
the page a dropdown menu is visible. This menu can be used to select a case, in this
example named Example. When a case is selected, one or more services will be listed
below the dropdown. For each service, the name and id are presented. Furthermore, all
metrics of the service are shown graphically via bars. Some metrics, such as Verifiability
or Intelligence have a number beside that bar; this number represents the absolute value
of that metric, while the bar represents the normalised value.

46

4.8. Frontend

Figure 4.6: The Enodo frontend.

47

CHAPTER 5
Results

This chapter describes the test setup for the Enodo framework. All components and
their setup are introduced and the test samples are described. The resulting metrics are
shown and will be discussed in Section 6.1.

5.1 Setup

The integrated Enodo framework is tested while integrated into Guardia. This allows for
a review closest to the real-world application of the framework. The system specifications
of the system are shown in Table 5.1.

Operating System Fedora 36
Container Management Docker 20.10.17
Kernel Version 5.18.13
System Type x64
Processor Intel i7-8665U
RAM 32GB

Table 5.1: System specifications of the test system.

For the calculation of Similarity, some properties are assigned custom weights; these
are empirically chosen and try to minimize the impact of the timestamps created and
modified when comparing objects from two different sources. Additionally, custom
properties are ignored as these need special cases handling them and no such comparator
is implemented. The properties integration and raw_report also weighted lower
than 1.0 as they might differ significantly between two objects from different sources while
the content refers to the same concept. The property classification is weighted

49

5. Results

with 2.0 as this property is an important aspect of the object type report in terms of
similarity. The full weight map can be seen in Table 5.2.

Type Weight

created 0.2
modified 0.2
custom 0.0
integration 0.5
raw_report 0.2
classification 2.0

Table 5.2: Weight map for the similarity calculation.

Furthermore, all tests were executed from the internal network of the University of
Applied Sciences Upper Austria, Campus Hagenberg, located in Hagenberg im Mühlkreis.
The provided network speed at the time of writing, August 2022, is 710Mbps Down–
and Upload. Guardia is deployed via Docker and runs on the single instance noted in
Table 5.1.

5.2 Report Example
The STIX 2.1 standard includes an example report [18], seen in Listing A.2 in the
appendix. This example report contains just 5 objects; 1× report, 1× identity, 1×
indicator, 1× campaign and 1× relationship. However, Enodo is still able to
analyze this package, as seen in Figure 5.1.

Figure 5.1: Metrics of the report bundle provided by the STIX standard.

50

5.3. E-Mail File

Extensiveness The report shows low extensiveness with a value of 0.31.

The indicator object contains 4 type-specific properties: name, indicator_types,
pattern and valid_from. 9 properties are possible for the indicator type, thus
the extensiveness value of this object is 0.44. The campaign object has 1 type-specific
property set: name, of possible 6 properties, resulting in a extensiveness value of 0.17.

As the other two objects within the bundle, identity and report are not contained
within the report itself, they are not counted against the extensiveness. Thus, the
extensiveness metric for the source is 0.44+0.17

2 = 0.31.

Verifiability No object contained within the bundle references any external sources,
thus the verifiability metric for the source is 0.0.

Intelligence The value of the non-normalised intelligence metric is 0.5, as the report
contains 3 objects; two SDOs and 1 SRO. Thus, dividing the number of relationships
with the number of objects yields 1

2 = 0.5. Normalisation happens by taking the highest
metric of a source and dividing by it; thus 0.5

0.5 = 1.0.

Similarity As no other sources are contained within the bundle, the similarity is 0.0
as no other objects are available to compare against.

Completeness The completeness takes into account how much of the world view is
provided by the source. As no other sources contribute to the world view, the completeness
of the source is rated at 1.0.

Duration As this example bundle was not executed within the Guardia framework, no
duration is available to be measured, therefore it is omited from metric overview and
also not considered in the trust indicator calculation.

5.3 E-Mail File

An email message with textual content, as seen in Listing 5.1, is uploaded as a file in the
interface. The email itself was sent from konstantin@papesh.at to konstantin.papesh@fh-
hagenberg.at.

www.orf.at
www.dietagespresse.com

Have fun!

Listing 5.1: Content of the email used for testing.

51

5. Results

5.3.1 Single Service

In this test case, only a single service is selected to enrich the input. After the playbook
has been run, a report containing 137 objects, from which 66 were relationships, gets
generated. A distribution of all objects contained within the report can be seen in
Figure 5.2. For this report, Enodo calculated the metrics seen in Figure 5.3.

Figure 5.2: Types contained within the resulting STIX bundle.

Figure 5.3: Metrics for the email workflow with a single service enabled.

Extensiveness The extensiveness metric yields a value of 0.47, so less than half
the possible attributes for objects from the source are filled. For example, thirteen
ipv4-addr objects are contained within the bundle. But for each object, only the

52

5.3. E-Mail File

value parameter is set, leaving the resolves_to_refs and belongs_to_refs
parameters empty. Also the contained domain-name objects only contain value,
leaving them with an extensiveness of 0.5 as the resolves_to_refs parameter is left
empty.

Verifiability The verifiability metric is 0 for the source. This is due to the fact that the
source does not reference any external sources in its objects. No external_references
parameter was set in any object.

Intelligence Intelligence is measured by the number of relationships compared to the
number of SDOs from the source. The intelligence metric itself is 1.0, this is because no
other source was available to normalise to. Thus, the source has the highest intelligence
rating in the world view, resulting in a normalised value of 1.0. The true, non-normalised
intelligence metric is 0.97. Thus, the object has slightly fewer relationships than SDOs.
In the STIX bundle, there are 31 relationships attributed to the source, while 32 STIX
objects are attributed to the source, thus resulting in an intelligence score of 0.97.

Similarity The similarity metric is 0.4, which means that objects from the source
resemble objects from other sources on an average of about 40%. While only a single
service was used to analyze the input data, Guardia also inserts some STIX objects into
the bundle; these are extracted from the input data. While these objects do not show
up in the source metric listings, they are still compared against the metrics of services.
In this case, Guardia adds some Domain Name objects to the bundle. The similarity
between domain names is often very high as only some letters may differ. For example,
the bundle includes two domain names; mx-gate04-conova.antispameurope.com
and mx-gate06-conova.antispameurope.com. Both only differ by a single digit,
4 and 6. The source contributes the 06 domain name, resulting in a high similarity value.

Completeness Similar to Similarity, the completeness metric also takes into account
objects created by Guardia itself. As ip-api.com already contributes 32 objects to the
bundle, with 49 objects counted, the completeness yields a value of 0.65. As some
objects are very similar and thus result in a similarity higher than the set threshold for
completeness, they are also counted to the completeness for the source, resulting in a
final completeness of 0.67.

Duration The run time duration of the service is an average of 7.67 seconds. Converting
it to a metric via the formula described in Section 3.5 yields a value of 0.93.

Trust Indicator The final TI metric for the source ip-api.com yields a value of 0.57.
This value is aggregated from all other metric values, without any weighting done.

53

5. Results

5.3.2 Multiple Services

This test uses the same email as the test with the single service. However, a multitude of
services has been selected to enrich the input data.

The final STIX bundle of the workflow contains 490 objects, with 234 relationships. 60
identities are contained and 58 reports were created by them. An overview of all objects
can be seen in Figure 5.4.

Figure 5.4: Types contained within the resulting STIX bundle.

For brevity, the metrics are transformed into a table as seen in Table 5.3. The results
as displayed on the webpage are shown in Figure A.1. Notably, some custom objects

Name TI Ext. Ver. Int. Sim. Comp. Dur.
EmailRep 0.49 0.25 0.00 1.00 0.73 0.01 0.93
Maltiverse 0.48 0.37 0.00 0.38 0.75 0.43 0.94
NetworksDb 0.47 0.40 0.00 0.64 0.68 0.12 0.96
VirusTotal 0.46 0.41 0.00 0.23 0.51 0.66 0.95
ip-api.com 0.46 0.50 0.00 0.37 0.55 0.37 0.96
Nextpart 0.43 0.34 0.00 0.27 0.61 0.93 -
Shodan 0.43 0.50 0.00 0.57 0.48 0.08 0.97
SocialScan 0.27 0.20 0.00 0.17 0.29 0.04 0.92

Table 5.3: Metrics for the email workflow with all services enabled.

are contained within the bundle; namely analysis and playbook-run. These two
types are introduced by Nextpart and their implementation must be done manually, i.e.
what properties they contain. Else, unknown object types will fall back onto the common
properties defined by the STIX standard. This will reduce the accuracy of the metrics.
All custom objects received within this bundle are implemented, thus no loss of accuracy
is observed.

54

5.4. Malicious Hash

Extensiveness Extensiveness varies greatly between services, with a range between
0.2 and 0.5. SocialScan receives the lowest extensiveness score with 0.2. Upon closer
inspection of the objects attributed to the source, the low score becomes clear; the service
returns two types of objects; domain-name and user-account. The domain-name
objects only provide the Value property, with the ResolvesToRefs property unset;
resulting in an extensiveness value of 0.5. The user-account objects properties are
completely empty, resulting in a score of 0. So the final score of SocialScan can be
calculated by summation of all values and by taking the average. 5 objects are returned;
2 domain names and 3 user accounts, thus, the extensiveness metric of SocialScan can be
calculated: 0.5+0.5

5 = 0.2. This is also the score calculated by Enodo.

Verifiability The verifiability metric is 0 for all services; no external_references
are set by any source.

Intelligence Values of the intelligence parameter vary between 0.17 and 1.0. Again,
SocialScan returns the least intelligence with a score of 0.17, while EmailRep returns
an intelligence score of 1.0. The non-normalised scores as seen in Figure A.1 are 3.5 for
EmailRep and 0.6 for SocialScan.

Similarity The services are quite similar to each other, with most services having a
similarity between 0.48 and 0.75, with only SocialScan having a severely lower score of
0.29.

Completeness Approximately 9 in 10 objects are contributed by internal Nextpart
services, with the Nextpart service having a score of 0.93. The contributions of other
services vary between 0.01 and 0.66, with EmailRep receiving the lowest completeness
score of 0.01, meaning that while the Intelligence included in its contributions is rated
the best of all services, it only contributes a small fraction to the final result.

Duration All services respond in a similar duration, with ratings between 0.92 and
0.97.

Trust Indicator All services receive a similar trust indicator between 0.43 and 0.49,
with only SocialScan, due to its low intelligence and completeness score, receiving a
rating of 0.27.

5.4 Malicious Hash

Guardia allows the input of file hashes into the GUI. This file hash is then analyzed by
multiple services. The used file hash is ff20333d38f7affbfde5b85d704ee20cd6-
0b519cb57c70e0cf5ac1f65acf91a6, retrieved from the MalwareBazaar database.

55

5. Results

Two services are able to work with file hashes, VirusTotal and MalwareBazaar, as seen
in Figure 5.6. The STIX bundle contains 211 objects, 95 of which are relationships, see
Figure 5.5. Furthermore, 83 objects are of type identity. These identities are created
by VirusTotal and represent different engines used by it to analyze files.

Figure 5.5: Types contained within the resulting STIX bundle.

Figure 5.6: Metrics for the hash workflow with all services enabled.

Extensiveness Both services receive scores no higher than 0.5, with MalwareBazaar
having less than 1/4 of all possible properties filled on average, resulting in a score of
0.23. VirusTotal fares slightly better with half of the properties filled, yielding a score of
0.5.

56

5.4. Malicious Hash

Verifiability As the input data is pointing to a malicious file, the services are able to
reference external websites containing information about the malware referenced by the
hash. MalwareBazaar receives a verifiability rating of 0.73 with 2 external references set
in 22 objects, thus 2

22 = 0.09. VirusTotal contains just a single reference, with 8 objects
attributed to the source, thus 1

8 = 0.125. As the parameter is normalised, VirusTotal
receives a verifiability score of 1.0, with MalwareBazaar receiving 0.09

0.125 = 0.72.

Intelligence VirusTotal provides 8 relationships for 8 SDOs, thus receiving a score of
1.0. MalwareBazaar only includes 16 relationships within its response while serving 22
SDOs, thus a metric score of 0.73 is given.

Similarity The similarity between both services ranges between 0.41 and 0.48. This is
due to the fact that both reference the same malicious hash, thus some returned objects
contain the same information.

Completeness In terms of completeness, MalwareBazaar contributes more objects to
the final STIX graph with a score of 0.73, while VirusTotal only contributes 0.33.

Duration Both services take the same time to respond, thus the duration score is 0.98
for both services.

Trust Indicator VirusTotal receives a higher score in most metrics except completeness,
thus its trust indicator is also higher with a value of 0.71. MalwareBaraar, while
contributing more to the final STIX graph, is lacking in the other metrics, thus a score
of 0.63 is assigned.

57

CHAPTER 6
Discussion & Outlook

6.1 Discussion
The Enodo framework is able to rate input data with different characteristics, including
workflows with only a single service, workflows with multiple services and workflows
analyzing malicious data.

Workflows containing only a single service receive the least amount of usable metrics. As
some metrics are normalized and some depend on multiple services within the worldview,
they have reduced usefulness if used to rate a single service. Verifiability and Intelligence
both are normalized and thus yield 0.0 or 1.0 as their value. As a workaround, their
absolute values could be taken into account to determine their quality. Similarity and
Completeness also depend on the worldview but are by nature normalized. Thus, the
only useful metrics in connection with single service workflow runs are Extensiveness and
Duration.

Workflows containing non-malicious data are able to be rated on all metrics presented,
however, the verifiability metric suffers from a lack of external references; as no Common
Vulnerabilities and Exposures (CVE)s or virus databases are able to be referenced, all
services receive a score of 0.0, thus reducing the trust indicator. One possibility to
mitigate this problem is to drop Verifiability from the trust indicator calculation if no
service lists any external references. While this does not alter the ranking of services, it
normalizes the global average trust indicator rating of a service when observing it in the
long run as fewer fluctuations will take place.

Workflows with malicious data receive the most meaningful metrics, with all scores
having non-zero values. The example in Section 5.4 shows that services return external
references when malicious data is fed. Having external references set leads to an increased
verifiability metric, resulting in the Malicious Hash run having the highest trust indicators
for services of all runs.

59

6. Discussion & Outlook

It can also be noted that no service returns the full spectrum of object properties offered
by STIX, with most services having an extensiveness between 0.25 and 0.5.

Another note is the difference of Completeness between services. Taking Section 5.3.2
as an example, the highest ranked service by the trust indicator, EmailRep, only has a
completeness of 0.01, thus its impact on the worldview is minor. Its similarity is also
quite high at 0.73. So it may be possible that the information returned by the EmailRep
service is already contained within the responses of the other services, and the EmailRep
service can be omitted from the playbook.

On the other hand, SocialScan received the lowest trust indicator with 0.27. The service
is neither extensive nor has a high intelligence count. Its completeness value is set at
0.04, meaning it has little impact on the worldview. Yet, it has the lowest similarity
with all other services with its similarity value at 0.29. This suggests that the service
introduces information that is not yet supplied by other services, however, the quality
of said information is lacking. A security analyst may take a look at the objects of
the service and determine if they are extensive enough to be kept or if the service is
superfluous in the current playbook. Security analysts must always consider each metric
individually before recommending a service, as some may yield good values in some
metrics, but pose a negligible impact on the worldview.

One noticeable drawback of some metrics, namely Verifiability and Intelligence, is their
metric dependence on the worldview. As the metrics are normalized against the maximum
of the current run, the same response from a source will be rated differently depending
on the responses of other services. A non-normalized intelligence score of 0.75 will yield a
normalized score of 0.8 in one run and 0.55 in another one as other services yield different
intelligence metrics. This issue could be mitigated by using a fixed normalization factor
which does not change between runs, for example defining a maximum number of external
references useful for the security analyst and any service above that maximum number
will receive an intelligence metric of 1.0, no matter the number of external references.
This fixed number will replace the currently used normalization of the maximum average
number of references, thus decoupling the intelligence metric for a single service from the
other services.

6.2 Outlook

In Section 1.2, the research question How can data quality be measured within Security
Orchestration, Automation, and Response platforms? and following sub-questions have
been established:

1. What CTI measurements do already exist?

2. How can these be altered to work with CTI data of a SOAR platform?

3. How can a CTI rating framework be incorporated into a SOAR platform?

60

6.2. Outlook

Chapter 3 shows that a variety of metrics already exist within the literature. However,
not all are suitable for SOAR platforms, with some totally unviable for use while others
must be altered for use within SOARs. Alterations must also be made to SOAR platforms
as well as some metrics are requiring a deeper knowledge of sources than is conveyed
solely by the STIX response. Multiple metrics also rely on observation of the source with
two or more data points captured.

Alterations made to the metrics concern clarifications of formulas, adding alternative
normalization and adding SCOs to the supported STIX types of the metric. On the
technical side, the proposed textual comparison [37] is replaced by a more granular
comparison which compares objects by each property.

The integration of a CTI rating framework into a SOAR platform does not pose major
complications; thanks to a universal standard like STIX, CTI can easily be rated without
knowledge of the platform behind it as just STIX needs to be transferred between both
implementations. However, some metrics require metadata about services and run times
to work; these metadata values are not part of the STIX standard and must be transferred
via other means such as JSON. Additionally, these metrics must be aggregated from
within the SOAR platform.

As demonstrated in Chapter 5, the metrics are able to rate services in depth. For a
single service, different metric values can vary by a wide margin, exposing weaknesses
or strengths of a service. A single metric can also be compared against the metric of
another service, allowing one to discern higher quality services within a playbook.

Further research directions are additional metrics, especially in the direction of the
Schlette et al. [35] metric Appropriate amount of data. Developing a metric that not
only indicates if there is too little but also if there is too much data is in line with the
purpose of the rating framework; lowering the information overload on security analysts.

There is also the possibility of adding more metrics to the trust indicator score, further
enhancing its capability of determining data quality. Another direction of research is the
implementation of a framework concerned with automating the exclusion of irrelevant
services from a playbook. Instead of relying on a security analyst to recommend or
remove services from a playbook, the metrics in cooperation with a validation component
could be used to remove services dynamically.

The metrics currently implemented in the Enodo framework can also be further improved
by user feedback. The usage of these metrics in production may uncover flaws or
oversights in metrics that are not inherently visible. Long-term usage may also result in
the discovery of factors not yet taken into account by the existing metrics.

As mentioned, multiple metrics require historic data. While this is not feasible for the
Enodo framework, another component could be implemented to also cover these metrics.

Some metrics could also be improved by feeding it more metadata. For example, Verifia-
bility currently only takes the length of external references into account. An improved

61

6. Discussion & Outlook

version could also check for the validity of these references, for example by checking if
the external reference exists and the URL is reachable.

In conclusion, the implemented framework provides a starting point for managing data
quality within SOAR platforms. However, more research is needed to further improve
the analysis of services and eventually completely automate playbook composition and
service recommendation.

62

APPENDIX A
Technical Details

{
"runID": "222871ba",
"bundle": {

"type": "bundle",
"id": "bundle--f65107e1",
"objects": [

{
"created": "2022-07-05T14:35:39.062930Z",
"modified": "2022-07-05T14:35:39.062930Z",
"created_by_ref": "identity--f65107e1",
"spec_version": "2.1",
"type": "grouping",
"id": "grouping--f65107e1",
"name": "New Case",
"context": "unspecified",
"object_refs": [

"playbook-run--3b5ca1bf"
]

},
...,
{

"created": "2022-07-05T14:36:07.467793Z",
"modified": "2022-07-05T14:36:11.696547Z",
"spec_version": "2.1",
"type": "relationship",
"id": "relationship--481763f5",
"relationship_type": "located-at",
"source_ref": "identity--2df176ed",

63

A. Technical Details

"target_ref": "location--f00799b0"
}

]
},
"services": {

"ShovelApi": {
"durations": [

3.083839178085327,
4.069600582122803,
3.5667531490325928,
7.970273971557617

]
},
...,
"WhoisApi": {

"durations": [
5.3900086879730225,
5.079076766967773,
4.930721044540405,
4.130650043487549

]
}

}
}

Listing A.1: Analyzer JSON response from the scraper.

{
"runId": "Example",
"caseId": "example",
"bundle": {

"type": "bundle",
"id": "bundle--44af6c39-c09b-49c5-9de2-394224b04982",
"objects": [

{
"type": "identity",
"spec_version": "2.1",
"id": "identity--a463ffb3-1bd9-4d94-b02d-74e4f1658283",
"created": "2015-01-21T19:59:17.000Z",
"modified": "2015-01-21T19:59:17.000Z",
"name": "Acme Cybersecurity Solutions"

},
{

"type": "report",

64

"spec_version": "2.1",
"id": "report--84e4d88f-44ea-4bcd-bbf3-b2c1c320bcbd",
"created_by_ref": "identity--a463ffb3-1bd9-4d94-b02d-74

↪→ e4f1658283",
"created": "2015-12-21T19:59:11.000Z",
"modified": "2016-05-21T19:59:11.000Z",
"name": "The Black Vine Cyberespionage Group",
"description": "A simple report with an indicator and

↪→ campaign",
"published": "2016-01-20T17:00:00.000Z",
"report_types": [

"campaign"
],
"object_refs": [

"indicator--26ffb872-1dd9-446e-b6f5-d58527e5b5d2",
"campaign--83422c77-904c-4dc1-aff5-5c38f3a2c55c",
"relationship--f82356ae-fe6c-437c-9c24-6b64314ae68a"

]
},
{

"type": "indicator",
"spec_version": "2.1",
"id": "indicator--26ffb872-1dd9-446e-b6f5-d58527e5b5d2

↪→ ",
"created": "2015-12-21T19:59:17.000Z",
"modified": "2016-05-21T19:59:17.000Z",
"name": "Some indicator",
"indicator_types": [

"malicious-activity"
],
"pattern": "[file:hashes.MD5 = ’3773

↪→ a88f65a5e780c8dff9cdc3a056f3’]",
"valid_from": "2015-12-21T19:59:17Z",
"created_by_ref": "identity--a463ffb3-1bd9-4d94-b02d-74

↪→ e4f1658283"
},
{

"type": "campaign",
"spec_version": "2.1",
"id": "campaign--83422c77-904c-4dc1-aff5-5c38f3a2c55c",
"created_by_ref": "identity--a463ffb3-1bd9-4d94-b02d-74

↪→ e4f1658283",
"created": "2015-12-21T19:59:17.000Z",

65

A. Technical Details

"modified": "2016-05-21T19:59:17.000Z",
"name": "Some Campaign"

},
{

"type": "relationship",
"spec_version": "2.1",
"id": "relationship--f82356ae-fe6c-437c-9c24-6

↪→ b64314ae68a",
"created_by_ref": "identity--a463ffb3-1bd9-4d94-b02d-74

↪→ e4f1658283",
"created": "2015-12-21T19:59:17.000Z",
"modified": "2015-12-21T19:59:17.000Z",
"source_ref": "indicator--26ffb872-1dd9-446e-b6f5-

↪→ d58527e5b5d2",
"target_ref": "campaign--83422c77-904c-4dc1-aff5-5

↪→ c38f3a2c55c",
"relationship_type": "indicates"

}
]

},
"services": []

}

Listing A.2: Example report, taken from the STIX 2.1 standard[18].

66

Figure A.1: Metrics for an email with all services enabled.

67

A. Technical Details

Algorithm A.1: Comparing the properties of two STIX objects.
1 Function CompareProperties(OT his, OOther):
2 for Property ∈ OT his.P roperties do
3 if Property /∈ OOther.P roperties then
4 Skip;
5 end
6 OtherProperty := OOther.P roperties[Property.Name];
7 begin
8 switch Property.Name do
9 case ExternalReference do

10 SimilarityMap[Property.Name] =
ExternalReferencesSimilarity(Property.ExternalReferences,
OtherProperty.ExternalReferences);

11 end
12 case KillChainPhases do
13 SimilarityMap[Property.Name] =

KillChainPhasesSimilarity(Property.KillChainPhases,
OtherProperty.KillChainPhases);

14 end
15 case Default do
16 begin
17 switch Property.Type do
18 case List do
19 SimilarityMap[Property.Name] =

SliceSimilarity(Property.Elements,
OtherProperty.Elements);

20 end
21 case String do
22 SimilarityMap[Property.Name] =

StringSimilarity(Property, OtherProperty);
23 end
24 case Number do
25 SimilarityMap[Property.Name] =

NumberSimilarity(Property, OtherProperty);
26 end
27 end
28 end
29 end
30 end
31 end
32 end
33 return SimilarityMap;

68

List of Figures

2.1 Components of a SOAR platform. Source [13]. 8
2.2 An email file being uploaded to Guardia. 9
2.3 The resulting STIX graph as displayed by Guardia. 10

3.1 The three steps of FeedRank: Feed Collection, Correlation Graph & Contri-
bution Analysis and Feed Rating. Source [30]. 14

3.2 Three data quality levels. Source [35]. 18

4.1 The Enodo architecture. 32
4.2 The Enodo database structure. 33
4.3 Dagster workflow as shown on the Dagster GUI. 34
4.4 Sequence diagram of the hook workflow. 35
4.5 Sequence diagram of the scraper workflow. 36
4.6 The Enodo frontend. 47

5.1 Metrics of the report bundle provided by the STIX standard. 50
5.2 Types contained within the resulting STIX bundle. 52
5.3 Metrics for the email workflow with a single service enabled. 52
5.4 Types contained within the resulting STIX bundle. 54
5.5 Types contained within the resulting STIX bundle. 56
5.6 Metrics for the hash workflow with all services enabled. 56

A.1 Metrics for an email with all services enabled. 67

69

List of Tables

2.1 The taxonomy of STIX. Source [18]. 6

3.1 The extensiveness computation [34]. 16
3.2 The freshness computation [34]. 16
3.3 Overview of metrics and their fulfilment of requirements. 26
3.4 The final metrics and their corresponding formulas. 30

4.1 Items needed for the analyzer and their sources. 34

5.1 System specifications of the test system. 49
5.2 Weight map for the similarity calculation. 50
5.3 Metrics for the email workflow with all services enabled. 54

71

List of Algorithms

4.1 Calculation of Extensiveness. 38

4.2 Calculation of Verifiability. 39

4.3 Calculation of Intelligence. 40

4.4 Calculation of Similarity. 41

4.5 Calculation of the similarity map. 42

4.6 Calculation of object similarity. 43

4.7 Calculation of Completeness. 43

4.8 Calculation of an indicator. 44

4.9 Calculation of Duration. 44

A.1 Comparing the properties of two STIX objects. 68

73

Glossary

Dagster Dagster is a data orchestration platform used to schedule playbooks. 31–37,
45, 69, 75

Docker Docker is a software platform allowing for simple deployment of applications
within containers. 50

Enodo Enodo is a CTI scoring framework within the Guardia architecture. 31–33, 39,
46, 47, 49, 50, 52, 55, 59, 61, 69, 75

Go Go, also called Golang, is a programming language by Google and is designed to be
used in microservices. 31, 45

GraphQL GraphQL is a query language for APIs used by Dagster and Enodo. 36, 37,
46

Guardia SOAR platform created by Nextpart. vii, 2, 8–12, 22, 25, 28, 29, 31, 32, 35–39,
44–46, 49–51, 53, 55, 69, 75

Nextpart Nextpart Security Intelligence GmbH is the primary stakeholder of this thesis.
vii, 2, 3, 45, 54, 55, 75

OASIS Organization for the Advancement of Structured Information Services is a
nonprofit consortium providing the STIX standard. 19

Op Op is an atomic code fragment used within Dagster workflows to execute playbooks.
33

Python Python is a programming language used frequently in data science and general
programming. 31–33, 45

Svelte Svelte is a front end compiler, combining Hypertext Markup Language (HTML)
and JavaScript code. 46

Vite Vite is a build tool for web projects. 46

75

WHOIS WHOIS queries can be used to obtain information about domains, IP blocks
or autonomous systems. 9

76

Acronyms

API Application Programming Interface. 24, 25, 32, 33, 35–37, 45, 46

CSV Comma-seperated Values. 22

CTI Cyber Threat Intelligence. vii, ix, xi, 1–3, 5, 6, 10–15, 17, 19–25, 27, 28, 31, 32, 44,
60, 61, 75

CVE Common Vulnerabilities and Exposures. 59

CybOX Cyber Observable Expression. 1

DQ data quality. ix, 17, 18, 21, 62, 69

E-EWS ECHO - Early Warning System. 15

GUI Graphical User Interface. 34, 46, 55, 69

HTML Hypertext Markup Language. 75

HTTP Hypertext Transfer Protocol. 38

IP Internet Protocol. 76

JSON Java Script Object Notation. 5, 6, 19, 37, 38, 42, 61

OpenIOC Open Indicators of Compromise. 1, 22

ORM Object–Relational Mapping. 31, 45, 46

SCO STIX Cyber-observable Object. 6, 7, 30, 45, 46, 61

SDO STIX Domain Object. 6, 7, 17, 41, 51, 53, 57

SIRP Security incident response platform. 7

SMO STIX Meta Objects. 6

77

SOA Security orchestration and automation. 7

SOAR Security Orchestration, Automation, and Response. ix, xi, 1–3, 5, 7–10, 13,
26–28, 30, 45, 60–62, 69, 75

SOC Security Operations Center. 1, 5, 7, 11

SRO STIX Relationship Object. 6, 7, 17, 51

STIX Structured Threat Information Expression. ix, xi, 1, 3, 5, 6, 9–14, 17–19, 21, 22,
24–30, 32, 35–40, 42, 44, 45, 50, 52–54, 56, 57, 60, 61, 66, 68, 69, 71, 73, 75

TAXII Trusted Automated Exchange of Intelligence Information. 45

TIP Threat intelligence platform. 7

TQM Trust and Quality Tool. 15, 25

URL Uniform Resource Locator. 37, 62

VERIS Vocabulary for Event Recording and Incident Sharing. 1

XML Extensible Markup Language. 5

78

Bibliography

[1] R. Brown and R. M. Lee, „2021 SANS Cyber Threat Intelligence (CTI) Survey“,
SANS Institute, Tech. Rep., 2021. [Online]. Available: https://www.sans.org/
white-papers/40080/.

[2] T. D. Wagner, K. Mahbub, E. Palomar, and A. E. Abdallah, „Cyber threat
intelligence sharing: Survey and research directions“, Computers & Security, vol. 87,
p. 101 589, Nov. 2019, issn: 01674048. doi: 10.1016/j.cose.2019.101589.
[Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/
S016740481830467X.

[3] Camille Singleton, Charlotte Hammond, Vio Onut, et al., „X-Force Threat Intelli-
gence Index 2022“, IBM, Tech. Rep., 2022.

[4] ISACA, „State of Cybersecurity 2022“, Tech. Rep., 2022.
[5] Secureworks, „Threat Intelligence Executive Report“, Tech. Rep., 2022.
[6] K. I. Sgouras, A. D. Birda, and D. P. Labridis, „Cyber attack impact on critical

Smart Grid infrastructures“, in ISGT 2014, IEEE, Feb. 2014, pp. 1–5, isbn: 978-
1-4799-3653-3. doi: 10.1109/ISGT.2014.6816504. [Online]. Available: http:
//ieeexplore.ieee.org/document/6816504/.

[7] M. J. Covington and R. Carskadden, „Threat Implications of the Internet of
Things“, in 2013 5th International Conference on Cyber Conflict (CYCON 2013),
K. Podins, J. Stinissen, and M. Maybaum, Eds., Tallinn: NATO CCD COE, Jun.
2013, pp. 1–12.

[8] K. Boeckl, M. Fagan, W. Fisher, N. Lefkovitz, K. N. Megas, E. Nadeau, D. G.
O’Rourke, B. Piccarreta, and K. Scarfone, „Considerations for managing Internet
of Things (IoT) cybersecurity and privacy risks“, National Institute of Standards
and Technology, Gaithersburg, MD, Tech. Rep., Jun. 2019. doi: 10.6028/NIST.
IR.8228. [Online]. Available: https://nvlpubs.nist.gov/nistpubs/ir/
2019/NIST.IR.8228.pdf.

[9] Federal Bureau of Investigation, „Internet Crime Report 2021“, Tech. Rep., 2021.
[Online]. Available: https://www.ic3.gov/Media/PDF/AnnualReport/
2021_IC3Report.pdf.

79

https://www.sans.org/white-papers/40080/
https://www.sans.org/white-papers/40080/
https://doi.org/10.1016/j.cose.2019.101589
https://linkinghub.elsevier.com/retrieve/pii/S016740481830467X
https://linkinghub.elsevier.com/retrieve/pii/S016740481830467X
https://doi.org/10.1109/ISGT.2014.6816504
http://ieeexplore.ieee.org/document/6816504/
http://ieeexplore.ieee.org/document/6816504/
https://doi.org/10.6028/NIST.IR.8228
https://doi.org/10.6028/NIST.IR.8228
https://nvlpubs.nist.gov/nistpubs/ir/2019/NIST.IR.8228.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2019/NIST.IR.8228.pdf
https://www.ic3.gov/Media/PDF/AnnualReport/2021_IC3Report.pdf
https://www.ic3.gov/Media/PDF/AnnualReport/2021_IC3Report.pdf

[10] R. Brown and P. Stirparo, „SANS 2022 Cyber Threat Intelligence Survey“, SANS
Institute, Tech. Rep., Feb. 2022. [Online]. Available: https://www.sans.org/
white-papers/sans-2022-cyber-threat-intelligence-survey/.

[11] C. Sauerwein, C. Sillaber, A. Mussmann, and R. Breu, „Threat Intelligence Sharing
Platforms: An Exploratory Study of Software Vendors and Research Perspectives“,
in Proceedings der 13. Internationalen Tagung Wirtschaftsinformatik, St. Gallen,
2017, pp. 837–851.

[12] Ponemon Institute, „The Value of Threat Intelligence: Annual Study of North
American & United Kingdom Companies“, Tech. Rep., Feb. 2019.

[13] C. Lawson and A. Price, „Market Guide for Security Orchestration, Automation
and Response Solutions“, Gartner, Tech. Rep., Jun. 2022.

[14] T. D. Wagner, E. Palomar, K. Mahbub, and A. E. Abdallah, „A Novel Trust
Taxonomy for Shared Cyber Threat Intelligence“, Security and Communication
Networks, vol. 2018, pp. 1–11, Jun. 2018, issn: 1939-0114. doi: 10.1155/2018/
9634507. [Online]. Available: https://www.hindawi.com/journals/scn/
2018/9634507/.

[15] X. Bouwman, H. Griffioen, J. Egbers, C. Doerr, B. Klievink, and M. Van Eeten,
„A Different Cup of TI? The Added Value of Commercial Threat Intelligence“,
in Proceedings of the 29th USENIX Conference on Security Symposium, USA:
USENIX Association, 2020, isbn: 978-1-939133-17-5.

[16] R. M. Blank and P. D. Gallagher, „Guide for conducting risk assessments“, National
Institute of Standards and Technology, Gaithersburg, MD, Tech. Rep., 2012. doi:
10.6028/NIST.SP.800-30r1. [Online]. Available: https://nvlpubs.nist.
gov/nistpubs/Legacy/SP/nistspecialpublication800-30r1.pdf.

[17] C. S. Johnson, M. L. Badger, D. A. Waltermire, J. Snyder, and C. Skorupka,
„Guide to Cyber Threat Information Sharing“, National Institute of Standards
and Technology, Gaithersburg, MD, Tech. Rep., Oct. 2016. doi: 10.6028/NIST.
SP.800-150. [Online]. Available: https://nvlpubs.nist.gov/nistpubs/
SpecialPublications/NIST.SP.800-150.pdf.

[18] B. Jordan, R. Piazza, and T. Darley, STIX Version 2.1, Jun. 2021. [Online].
Available: https://docs.oasis- open.org/cti/stix/v2.1/stix-
v2.1.html.

[19] OASIS Open, Comparing STIX 1.X/CybOX 2.X with STIX 2, Apr. 2022. [Online].
Available: https://oasis-open.github.io/cti-documentation/stix/
compare.

[20] M. Vielberth, F. Bohm, I. Fichtinger, and G. Pernul, „Security Operations Center:
A Systematic Study and Open Challenges“, IEEE Access, vol. 8, pp. 227 756–
227 779, 2020, issn: 2169-3536. doi: 10.1109/ACCESS.2020.3045514. [Online].
Available: https://ieeexplore.ieee.org/document/9296846/.

80

https://www.sans.org/white-papers/sans-2022-cyber-threat-intelligence-survey/
https://www.sans.org/white-papers/sans-2022-cyber-threat-intelligence-survey/
https://doi.org/10.1155/2018/9634507
https://doi.org/10.1155/2018/9634507
https://www.hindawi.com/journals/scn/2018/9634507/
https://www.hindawi.com/journals/scn/2018/9634507/
https://doi.org/10.6028/NIST.SP.800-30r1
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-30r1.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-30r1.pdf
https://doi.org/10.6028/NIST.SP.800-150
https://doi.org/10.6028/NIST.SP.800-150
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-150.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-150.pdf
https://docs.oasis-open.org/cti/stix/v2.1/stix-v2.1.html
https://docs.oasis-open.org/cti/stix/v2.1/stix-v2.1.html
https://oasis-open.github.io/cti-documentation/stix/compare
https://oasis-open.github.io/cti-documentation/stix/compare
https://doi.org/10.1109/ACCESS.2020.3045514
https://ieeexplore.ieee.org/document/9296846/

[21] FireEye, What is SOAR? Security definition | FireEye. [Online]. Available: https:
//www.fireeye.com/products/helix/what-is-soar.html.

[22] N. Schrock and M. Gasner, Dagster: The Data Orchestrator, Aug. 2020. [Online].
Available: https://dagster.io/blog/dagster-the-data-orchestrator.

[23] A. Tundis, S. Ruppert, and M. Mühlhäuser, „A Feature-driven Method for Au-
tomating the Assessment of OSINT Cyber Threat Sources“, Computers & Secu-
rity, vol. 113, p. 102 576, Feb. 2022, issn: 01674048. doi: 10.1016/j.cose.
2021.102576. [Online]. Available: https://linkinghub.elsevier.com/
retrieve/pii/S0167404821004004.

[24] H. Griffioen, T. Booij, and C. Doerr, „Quality Evaluation of Cyber Threat Intelli-
gence Feeds“, in Applied Cryptography and Network Security, M. Conti, J. Zhou, E.
Casalicchio, and A. Spognardi, Eds., Cham: Springer International Publishing, 2020,
pp. 277–296, isbn: 978-3-030-57878-7. doi: 10.1007/978-3-030-57878-7_14.

[25] V. G. Li, M. Dunn, P. Pearce, D. McCoy, G. M. Voelker, S. Savage, and K.
Levchenko, „Reading the Tea Leaves: A Comparative Analysis of Threat Intelli-
gence“, in Proceedings of the 28th USENIX Conference on Security Symposium,
ser. SEC’19, USA: USENIX Association, 2019, pp. 851–867, isbn: 9781939133069.

[26] G. González-Granadillo, M. Faiella, I. Medeiros, R. Azevedo, and S. González-
Zarzosa, „ETIP: An Enriched Threat Intelligence Platform for improving OSINT
correlation, analysis, visualization and sharing capabilities“, Journal of Information
Security and Applications, vol. 58, p. 102 715, May 2021, issn: 22142126. doi:
10.1016/j.jisa.2020.102715. [Online]. Available: https://linkinghub.
elsevier.com/retrieve/pii/S2214212620308589.

[27] A. Ramsdale, S. Shiaeles, and N. Kolokotronis, „A Comparative Analysis of Cyber-
Threat Intelligence Sources, Formats and Languages“, Electronics, vol. 9, no. 5,
p. 824, May 2020, issn: 2079-9292. doi: 10.3390/electronics9050824. [On-
line]. Available: https://www.mdpi.com/2079-9292/9/5/824.

[28] F. Menges and G. Pernul, „A comparative analysis of incident reporting formats“,
Computers & Security, vol. 73, pp. 87–101, Mar. 2018, issn: 01674048. doi: 10.
1016/j.cose.2017.10.009. [Online]. Available: https://linkinghub.
elsevier.com/retrieve/pii/S0167404817302250.

[29] O. Serrano, L. Dandurand, and S. Brown, „On the Design of a Cyber Security
Data Sharing System“, in Proceedings of the 2014 ACM Workshop on Information
Sharing & Collaborative Security - WISCS ’14, ser. WISCS ’14, New York, New
York, USA: ACM Press, 2014, pp. 61–69, isbn: 9781450331517. doi: 10.1145/
2663876.2663882. [Online]. Available: http://dl.acm.org/citation.
cfm?doid=2663876.2663882.

81

https://www.fireeye.com/products/helix/what-is-soar.html
https://www.fireeye.com/products/helix/what-is-soar.html
https://dagster.io/blog/dagster-the-data-orchestrator
https://doi.org/10.1016/j.cose.2021.102576
https://doi.org/10.1016/j.cose.2021.102576
https://linkinghub.elsevier.com/retrieve/pii/S0167404821004004
https://linkinghub.elsevier.com/retrieve/pii/S0167404821004004
https://doi.org/10.1007/978-3-030-57878-7_14
https://doi.org/10.1016/j.jisa.2020.102715
https://linkinghub.elsevier.com/retrieve/pii/S2214212620308589
https://linkinghub.elsevier.com/retrieve/pii/S2214212620308589
https://doi.org/10.3390/electronics9050824
https://www.mdpi.com/2079-9292/9/5/824
https://doi.org/10.1016/j.cose.2017.10.009
https://doi.org/10.1016/j.cose.2017.10.009
https://linkinghub.elsevier.com/retrieve/pii/S0167404817302250
https://linkinghub.elsevier.com/retrieve/pii/S0167404817302250
https://doi.org/10.1145/2663876.2663882
https://doi.org/10.1145/2663876.2663882
http://dl.acm.org/citation.cfm?doid=2663876.2663882
http://dl.acm.org/citation.cfm?doid=2663876.2663882

[30] R. Meier, C. Scherrer, D. Gugelmann, V. Lenders, and L. Vanbever, „FeedRank: A
tamper- resistant method for the ranking of cyber threat intelligence feeds“, in 2018
10th International Conference on Cyber Conflict (CyCon), vol. 2018-May, IEEE,
May 2018, pp. 321–344, isbn: 978-9-9499-9042-9. doi: 10.23919/CYCON.2018.
8405024. [Online]. Available: https://ieeexplore.ieee.org/document/
8405024/.

[31] L. Page, S. Brin, R. Motwani, and T. Winograd, „The PageRank Citation Ranking:
Bringing Order to the Web.“, Stanford InfoLab, Tech. Rep. 1999-66, Nov. 1999.
[Online]. Available: http://ilpubs.stanford.edu:8090/422/.

[32] S. Brin and L. Page, „The anatomy of a large-scale hypertextual Web search
engine“, Computer Networks and ISDN Systems, vol. 30, no. 1-7, pp. 107–117,
Apr. 1998, issn: 01697552. doi: 10.1016/S0169-7552(98)00110-X. [On-
line]. Available: https://linkinghub.elsevier.com/retrieve/pii/
S016975529800110X.

[33] Wikipedia contributors, PageRank — Wikipedia, The Free Encyclopedia, 2022.
[Online]. Available: https://en.wikipedia.org/w/index.php?title=
PageRank&oldid=1100639192.

[34] K. B. Mavzer, E. Konieczna, H. Alves, C. Yucel, I. Chalkias, D. Mallis, D. Cetinkaya,
and L. A. G. Sanchez, „Trust and Quality Computation for Cyber Threat Intel-
ligence Sharing Platforms“, in 2021 IEEE International Conference on Cyber
Security and Resilience (CSR), IEEE, Jul. 2021, pp. 360–365, isbn: 978-1-6654-
0285-9. doi: 10.1109/CSR51186.2021.9527975. [Online]. Available: https:
//ieeexplore.ieee.org/document/9527975/.

[35] D. Schlette, F. Böhm, M. Caselli, and G. Pernul, „Measuring and visualizing cyber
threat intelligence quality“, International Journal of Information Security, vol. 20,
no. 1, pp. 21–38, Feb. 2021, issn: 1615-5262. doi: 10.1007/s10207-020-00490-
y. [Online]. Available: http://link.springer.com/10.1007/s10207-020-
00490-y.

[36] M. S. Charikar, „Similarity estimation techniques from rounding algorithms“, in
Proceedings of the thiry-fourth annual ACM symposium on Theory of computing -
STOC ’02, New York, New York, USA: ACM Press, 2002, p. 380, isbn: 1581134959.
doi: 10.1145/509907.509965. [Online]. Available: http://portal.acm.
org/citation.cfm?doid=509907.509965.

[37] T. Schaberreiter, V. Kupfersberger, K. Rantos, A. Spyros, A. Papanikolaou, C.
Ilioudis, and G. Quirchmayr, „A Quantitative Evaluation of Trust in the Quality
of Cyber Threat Intelligence Sources“, in Proceedings of the 14th International
Conference on Availability, Reliability and Security, New York, NY, USA: ACM, Aug.
2019, pp. 1–10, isbn: 9781450371643. doi: 10.1145/3339252.3342112. [Online].
Available: https://dl.acm.org/doi/10.1145/3339252.3342112.

[38] P. Jaccard, „Lois de distribution florale dans la zone alpine“, Bulletin de la Société
vaudoise des sciences naturelles, vol. 38, no. 144, 1902.

82

https://doi.org/10.23919/CYCON.2018.8405024
https://doi.org/10.23919/CYCON.2018.8405024
https://ieeexplore.ieee.org/document/8405024/
https://ieeexplore.ieee.org/document/8405024/
http://ilpubs.stanford.edu:8090/422/
https://doi.org/10.1016/S0169-7552(98)00110-X
https://linkinghub.elsevier.com/retrieve/pii/S016975529800110X
https://linkinghub.elsevier.com/retrieve/pii/S016975529800110X
https://en.wikipedia.org/w/index.php?title=PageRank&oldid=1100639192
https://en.wikipedia.org/w/index.php?title=PageRank&oldid=1100639192
https://doi.org/10.1109/CSR51186.2021.9527975
https://ieeexplore.ieee.org/document/9527975/
https://ieeexplore.ieee.org/document/9527975/
https://doi.org/10.1007/s10207-020-00490-y
https://doi.org/10.1007/s10207-020-00490-y
http://link.springer.com/10.1007/s10207-020-00490-y
http://link.springer.com/10.1007/s10207-020-00490-y
https://doi.org/10.1145/509907.509965
http://portal.acm.org/citation.cfm?doid=509907.509965
http://portal.acm.org/citation.cfm?doid=509907.509965
https://doi.org/10.1145/3339252.3342112
https://dl.acm.org/doi/10.1145/3339252.3342112

[39] Elementl, Op Hooks | Dagster. [Online]. Available: https://docs.dagster.
io/0.15.0/concepts/ops-jobs-graphs/op-hooks.

[40] J. Bret and O. Morozov, FreeTAXII/libstix2. [Online]. Available: https://
github.com/freetaxii/libstix2.

[41] O. Krauss and K. Papesh, „Analysis of Threat Intelligence Information Exchange
via the STIX Standard“, in 2022 International Conference on Electrical, Computer,
Communications and Mechatronics Engineering (ICECCME), forthcoming.

83

https://docs.dagster.io/0.15.0/concepts/ops-jobs-graphs/op-hooks
https://docs.dagster.io/0.15.0/concepts/ops-jobs-graphs/op-hooks
https://github.com/freetaxii/libstix2
https://github.com/freetaxii/libstix2

	Preface
	Abstract
	Kurzfassung
	Introduction
	Landscape
	Goal
	Involved Stakeholder
	Structure

	Background
	Cyber Threat Information and Intelligence
	Structured Threat Information Expression
	Security Operations Center
	Security Orchestration, Automation, and Response
	Data Orchestrator
	Playbook
	Related Work

	Possible Approaches
	Requirements
	Possible STIX Metrics
	Possible API Metrics
	Discussion
	Final Metrics

	Methodology
	Overview
	Architecture
	Playbook Execution in Detail
	Hook
	Scraper
	Analyzer
	API
	Frontend

	Results
	Setup
	Report Example
	E-Mail File
	Malicious Hash

	Discussion & Outlook
	Discussion
	Outlook

	Technical Details
	List of Figures
	List of Tables
	List of Algorithms
	Glossary
	Acronyms
	Bibliography

		2022-09-02T11:14:35+0200
	Konstantin Heinz Papesh

